Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(18): 4131-4141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38780654

RESUMO

Wax printing is the most widely used method for fabricating microfluidic paper-based analytical devices (µPADs), but it still suffers from disadvantages like discontinuation of wax printers and need for additional equipment for heating treatment. To address these issues, this work initially describes a new class of wax printing approach for high-precision, batch fabrication of µPADs using a household 3D printer. It only involves a one patterning step of printing polyethylene wax into rice paper body. Under optimized parameters, a fabrication resolution, namely the minimum hydrophilic channel width, down to ~189 ± 30 µm could be achieved. In addition, the analytical applicability of such polyethylene wax-patterned µPADs was demonstrated well with enhanced colorimetric detection of dopamine as a model analyte by combining metal-organic framework (MOF) based nanoenzymes (ZIF-67) with a smartphone (for portable quantitative readout). The developed nanosensor could linearly detect dopamine over a concentration range from 10 to 1000 µM, with a detection limit of ca. 2.75 µM (3σ). The recovery results for analyzing several real samples (i.e., pig feed, chicken feed, pork and human serum) were between 91.82 and 102.79%, further validating its good detection accuracy for potential practical applications in food safety and medical diagnosis.


Assuntos
Dopamina , Limite de Detecção , Papel , Impressão Tridimensional , Dopamina/análise , Dopamina/sangue , Animais , Humanos , Estruturas Metalorgânicas/química , Colorimetria/métodos , Colorimetria/instrumentação , Suínos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Dispositivos Lab-On-A-Chip , Galinhas , Ração Animal/análise , Desenho de Equipamento
2.
Anal Bioanal Chem ; 416(8): 1821-1832, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363308

RESUMO

This paper describes initially the application of the Tyndall effect (TE) of metal-organic framework (MOF) materials as a colorimetric signaling strategy for the sensitive detection of pyrophosphate ion (PPi). The used MOF NH2-MIL-101(Fe) was prepared with Fe3+ ions and fluorescent ligands of 2-amino terephthalic acid (NH2-BDC). The fluorescence of NH2-BDC in MOF is quenched due to the ligand-to-metal charge transfer effect, while the NH2-MIL-101(Fe) suspension shows a strong TE. In the presence of PPi analyte, the MOFs will undergo decomposition because of the competitive binding of Fe3+ by PPi over NH2-BDC, resulting in a significant decrease in the TE signal and fluorescence restoration from the released ligands. The results demonstrate that the new method only requires a laser pointer pen (for TE creation) and a smartphone (for portable quantitative readout) to detect PPi in a linear concentration range of 1.25-800 µM, with a detection limit of ~210 nM (3σ) which is ~38 times lower than that obtained from traditional fluorescence with a spectrophotometer (linear concentration range, 50-800 µM; detection limit, 8.15 µM). Moreover, the acceptable recovery of PPi in several real samples (i.e., pond water, black tea, and human serum and urine) ranges from 97.66 to 119.15%.


Assuntos
Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/química , Colorimetria/métodos , Difosfatos/química , Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA