Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Cell Sci ; 128(15): 2781-94, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26101353

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that reside in the target membranes and transport vesicles assemble into specific SNARE complexes to drive membrane fusion. N-ethylmaleimide-sensitive factor (NSF) and its attachment protein, α-SNAP (encoded by NAPA), catalyze disassembly of the SNARE complexes in the secretory and endocytic pathways to recycle them for the next round of fusion events. γ-SNAP (encoded by NAPG) is a SNAP isoform, but its function in SNARE-mediated membrane trafficking remains unknown. Here, we show that γ-SNAP regulates the endosomal trafficking of epidermal growth factor (EGF) receptor (EGFR) and transferrin. Immunoprecipitation and mass spectrometry analyses revealed that γ-SNAP interacts with a limited range of SNAREs, including endosomal ones. γ-SNAP, as well as α-SNAP, mediated the disassembly of endosomal syntaxin-7-containing SNARE complexes. Overexpression and small interfering (si)RNA-mediated depletion of γ-SNAP changed the morphologies and intracellular distributions of endosomes. Moreover, the depletion partially suppressed the exit of EGFR and transferrin from EEA1-positive early endosomes to delay their degradation and uptake. Taken together, our findings suggest that γ-SNAP is a unique SNAP that functions in a limited range of organelles - including endosomes - and their trafficking pathways.


Assuntos
Endocitose/fisiologia , Receptores ErbB/metabolismo , Transporte Proteico/fisiologia , Proteínas Qa-SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Membrana Celular/metabolismo , Endossomos/metabolismo , Células Hep G2 , Humanos , Fusão de Membrana/fisiologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
J Biol Chem ; 289(16): 11497-11511, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24599962

RESUMO

Recent studies have suggested that phosphatidic acid (PA), a cone-shaped phospholipid that can generate negative curvature of lipid membranes, participates in mitochondrial fusion. However, precise mechanisms underling the production and consumption of PA on the mitochondrial surface are not fully understood. Phosphatidic acid-preferring phospholipase A1 (PA-PLA1)/DDHD1 is the first identified intracellular phospholipase A1 and preferentially hydrolyzes PA in vitro. Its cellular and physiological functions have not been elucidated. In this study, we show that PA-PLA1 regulates mitochondrial dynamics. PA-PLA1, when ectopically expressed in HeLa cells, induced mitochondrial fragmentation, whereas its depletion caused mitochondrial elongation. The effects of PA-PLA1 on mitochondrial morphology appear to counteract those of MitoPLD, a mitochondrion-localized phospholipase D that produces PA from cardiolipin. Consistent with high levels of expression of PA-PLA1 in testis, PA-PLA1 knock-out mice have a defect in sperm formation. In PA-PLA1-deficient sperm, the mitochondrial structure is disorganized, and an abnormal gap structure exists between the middle and principal pieces. A flagellum is bent at that position, leading to a loss of motility. Our results suggest a possible mechanism of PA regulation of the mitochondrial membrane and demonstrate an in vivo function of PA-PLA1 in the organization of mitochondria during spermiogenesis.


Assuntos
Mitocôndrias/enzimologia , Dinâmica Mitocondrial/fisiologia , Fosfatidato Fosfatase/metabolismo , Cauda do Espermatozoide/enzimologia , Espermatogênese/fisiologia , Animais , Cardiolipinas/genética , Cardiolipinas/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosfatidato Fosfatase/genética , Ácidos Fosfatídicos/genética , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/genética , Fosfolipase D/metabolismo
3.
Cell Commun Signal ; 13: 41, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26428302

RESUMO

BACKGROUND: Abl interactor (Abi) family proteins play significant roles in actin cytoskeleton organization through participation in the WAVE complex. Mammals possess three Abi proteins: Abi-1, Abi-2, and NESH/Abi-3. Abi-1 and Abi-2 were originally identified as Abl tyrosine kinase-binding proteins. It has been disclosed that Abi-1 acts as a bridge between c-Abl and WAVE2, and c-Abl-mediated WAVE2 phosphorylation promotes actin remodeling. We showed previously that NESH/Abi-3 is present in the WAVE2 complex, but neither binds to c-Abl nor promotes c-Abl-mediated phosphorylation of WAVE2. RESULTS: In this study, we characterized NESH/Abi-3 in more detail, and compared its properties with those of Abi-1 and Abi-2. NESH/Abi-3 was ectopically expressed in NIH3T3 cells, in which Abi-1, but not NESH/Abi-3, is expressed. The expression of NESH/Abi-3 caused degradation of endogenous Abi-1, which led to the formation of a NESH/Abi-3-based WAVE2 complex. When these cells were plated on fibronectin-coated dishes, the translocation of WAVE2 to the plasma membrane was significantly reduced and the formation of peripheral lamellipodial structures was disturbed, suggesting that the NESH/Abi-3-based WAVE2 complex was unable to help produce lamellipodial protrusions. Next, Abi-1, Abi-2, or NESH/Abi-3 was expressed in v-src-transformed NIH3T3 cells. Only in NESH/Abi-3-expressed cells did treatment with an Abl kinase inhibitor, imatinib mesylate, or siRNA-mediated knockdown of c-Abl promote the formation of invadopodia, which are ventral membrane protrusions with extracellular matrix degradation activity. Structural studies showed that a linker region between the proline-rich regions and the Src homology 3 (SH3) domain of Abi-1 is crucial for its interaction with c-Abl and c-Abl-mediated phosphorylation of WAVE2. CONCLUSIONS: The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based one, and NESH/Abi-3 may be involved in the formation of ventral protrusions under certain conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Pseudópodes/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Movimento Celular , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Células NIH 3T3 , Transporte Proteico
4.
Proc Natl Acad Sci U S A ; 108(31): 12746-51, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21768384

RESUMO

Sec16 plays a key role in the formation of coat protein II vesicles, which mediate protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus. Mammals have two Sec16 isoforms: Sec16A, which is a longer primary ortholog of yeast Sec16, and Sec16B, which is a shorter distant ortholog. Previous studies have shown that Sec16B, as well as Sec16A, defines ER exit sites, where coat protein II vesicles are formed in mammalian cells. Here, we reveal an unexpected role of Sec16B in the biogenesis of mammalian peroxisomes. When overexpressed, Sec16B was targeted to the entire ER, whereas Sec16A was mostly cytosolic. Concomitant with the overexpression of Sec16B, peroxisomal membrane biogenesis factors peroxin 3 (Pex3) and Pex16 were redistributed from peroxisomes to Sec16B-positive ER membranes. Knockdown of Sec16B but not Sec16A by RNAi affected the morphology of peroxisomes, inhibited the transport of Pex16 from the ER to peroxisomes, and suppressed expression of Pex3. These phenotypes were significantly reversed by the expression of RNAi-resistant Sec16B. Together, our results support the view that peroxisomes are formed, at least partly, from the ER and identify a factor responsible for this process.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sítios de Ligação/genética , Western Blotting , Proteínas de Ligação a DNA/genética , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Microscopia de Fluorescência , Peroxissomos/metabolismo , Ligação Proteica , Transporte Proteico , Interferência de RNA , Transfecção , Proteínas de Transporte Vesicular/genética
5.
Biochim Biophys Acta ; 1823(4): 930-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22922100

RESUMO

Members of the intracellular phospholipase A1 family of proteins have been implicated in organelle biogenesis and membrane trafficking. The mammalian family comprises three members: phosphatidic acid-preferring phospholipase A1 (PA-PIA1)/DDHD1, p125/Sec23ip and KIAA0725p/DDHD2, all of which have a DDHD domain. PA-PLAI is mostly cytosolic, while KIAA0725p and p125 are more stably associated with the Golgi/endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) and ER exit sites, respectively. Here we show that KIAAO725p and p125 are novel phosphoinositide-binding proteins. Deletion and mutational analyses of KIAAO725p suggested that a sterile alpha-motif (SAM), which is also present inp125, but not in cytosolic PA-PLAI, and the following DDHD domain comprise a minimal region for phosphatidylinositol 4-phosphate (Pl(4)P)-binding. A construct with mutations in the positively charged cluster of the SAM domain is defective in both phosphoinositide-binding and Golgi/ERGIC targeting. Consistent with the view that the Pl(4)P-binding is important for the membrane association of KIAA0725p, expression of phosphoinositide phosphatase Sacd reduces the association of expressed KIAAO725p with membranes. In addition, we show that deletion of the DDHD domain or introduction of point mutations at the conserved aspartate or histidine residues in the domain abolishes the phospholipase activity of KIAAO725p and PA-PLA1. Together, our results suggest that KIAAO725p is targeted to specific organelle membranes in a phosphoinositide-dependent manner, and that its SAM and DDHD domains are essential for its phosphoinositide-binding and phospholipase activity.


Assuntos
Espaço Intracelular/enzimologia , Mamíferos/metabolismo , Fosfolipases/química , Fosfolipases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Sequência Conservada , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositóis/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas de Ligação a RNA , Alinhamento de Sequência , Relação Estrutura-Atividade
6.
Mol Cell Biochem ; 376(1-2): 151-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23378048

RESUMO

CI-976 is a lysophospholipid acyltransferase antagonist that is known to affect secretory and endocytic membrane-trafficking pathways likely by increasing the lysophospholipid content in membranes. Our previous study suggested that lysophospholipids formed through the action of an intracellular phospholipase A(1), KIAA0725p (also known as DDHD2 and iPLA(1)γ), may be important for the association of this enzyme with membranes. In this study, we examined the effect of CI-976 on the membrane association of KIAA0725p. While in HeLa cells KIAA0725p is localized in the Golgi and cytosol, in mouse embryonic fibroblasts (MEFs), it was found to be principally localized in the cytosol with some on post-endoplasmic reticulum compartments including the cis-Golgi. Treatment of MEFs with CI-976 induced the redistribution of KIAA0725p to membrane tubules, which were in vicinity to fragmented mitochondria. These tubules were not decorated with canonical organelle markers including Golgi proteins. A human KIAA0725p mutant, which exhibits decreased membrane-binding ability, was also redistributed to membrane structures upon CI-976 treatment. Our data suggest that the association of KIAA0725p with membranes is regulated by lipid metabolism, and that CI-976 may create unique membrane structures that can be marked by KIAA0725p.


Assuntos
Anilidas/farmacologia , Membrana Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fosfolipases/metabolismo , Esterol O-Aciltransferase/antagonistas & inibidores , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Estruturas da Membrana Celular/efeitos dos fármacos , Estruturas da Membrana Celular/metabolismo , Estruturas da Membrana Celular/ultraestrutura , Citosol/efeitos dos fármacos , Citosol/metabolismo , Complexo Dinactina , Dineínas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Células HeLa/efeitos dos fármacos , Humanos , Hidroxiesteroide Desidrogenases/metabolismo , Membranas Intracelulares/enzimologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fosfolipases/genética , Fosfolipases A1/metabolismo
7.
EMBO J ; 27(15): 2043-54, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18650939

RESUMO

The biogenesis of endoplasmic reticulum (ER) exit sites (ERES) involves the formation of phosphatidylinositol-4 phosphate (PI4) and Sec16, but it is entirely unknown how ERES adapt to variations in cargo load. Here, we studied acute and chronic adaptive responses of ERES to an increase in cargo load for ER export. The acute response (within minutes) to increased cargo load stimulated ERES fusion events, leading to larger but less ERES. Silencing either PI4-kinase IIIalpha (PI4K-IIIalpha) or Sec16 inhibited the acute response. Overexpression of secretory cargo for 24 h induced the unfolded protein response (UPR), upregulated COPII, and the cells formed more ERES. This chronic response was insensitive to silencing PI4K-IIIalpha, but was abrogated by silencing Sec16. The UPR was required as the chronic response was absent in cells lacking inositol-requiring protein 1. Mathematical model simulations further support the notion that increasing ERES number together with COPII levels is an efficient way to enhance the secretory flux. These results indicate that chronic and acute increases in cargo load are handled differentially by ERES and are regulated by different factors.


Assuntos
Retículo Endoplasmático/fisiologia , Membranas Intracelulares/fisiologia , Modelos Biológicos , Vesículas Secretórias/fisiologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Complexo de Golgi/fisiologia , Células HeLa , Humanos , Antígenos de Histocompatibilidade Menor , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Dobramento de Proteína , Transporte Proteico , Transdução de Sinais , Proteínas de Transporte Vesicular/metabolismo
8.
Front Cell Dev Biol ; 8: 670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850804

RESUMO

DDHD1 and DDHD2 are both intracellular phospholipases A1 and hydrolyze phosphatidic acid in vitro. Given that phosphatidic acid participates in neurite outgrowth, we examined whether DDHD1 and DDHD2 regulate neurite outgrowth. Depletion of DDHD1 from SH-SY5Y and PC12 cells caused elongation of neurites, whereas DDHD2 depletion prevented neurite elongation. Rescue experiments demonstrated that the enzymatic activity of DDHD1 is necessary for the prevention of neurite elongation. Depletion of DDHD1 caused enlargement of early endosomes and stimulated tubulation of recycling endosomes positive for phosphatidic acid-binding proteins syndapin2 and MICAL-L1. Knockout of DDHD1 enhanced transferrin recycling from recycling endosomes to the cell surface. Our results suggest that DDHD1 negatively controls the formation of a local phosphatidic acid-rich domain in recycling endosomes that serves as a membrane source for neurite outgrowth.

9.
Biochem Biophys Res Commun ; 382(2): 303-8, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19275885

RESUMO

AAA ATPase VCP and its yeast ortholog Cdc48, in a complex with the Ufd1-Npl4 heterodimer as an adaptor, play an essential role in endoplasmic reticulum-associated degradation (ERAD). Several UBX domain-containing proteins function to recruit ubiquitylated substrates to VCP/Cdc48 by binding both VCP/Cdc48 and other ERAD components such as ubiquitin ligases. Here we show that mammalian UBXD1 is an additional UBX domain-containing protein involved in the ERAD process. UBXD1 is a cytosolic protein that interacts with VCP and Derlin-1. Overexpression of UBXD1 in cells causes selective dissociation of Ufd1 from VCP, resulting in inhibition of mutant cystic fibrosis transmembrane conductance regulator (CFTR) degradation by ERAD. Additionally, depletion of endogenous UBXD1 protein by RNA interference also results in a defect in CFTR degradation. Collectively, these findings suggest that UBXD1 is a regulatory component of ERAD that may modulate the adaptor binding to VCP.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/genética , Células HeLa , Humanos , Estrutura Terciária de Proteína , Proteína com Valosina
10.
Biochem J ; 410(1): 93-100, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17979832

RESUMO

SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins involved in membrane fusion usually contain a conserved alpha-helix (SNARE motif) that is flanked by a C-terminal transmembrane domain. They can be classified into Q-SNARE and R-SNARE based on the structural property of their motifs. Assembly of four SNARE motifs (Qa, b, c and R) is supposed to trigger membrane fusion. We have previously shown that ER (endoplasmic reticulum)-localized syntaxin 18 (Qa) forms a complex with BNIP1 (Qb), p31/Use1 (Qc), Sec22b (R) and several peripheral membrane proteins. In the present study, we examined the interaction of syntaxin 18 with other SNAREs using pulldown assays and CD spectroscopy. We found that the association of syntaxin 18 with Sec22b induces an increase in alpha-helicity of their SNARE motifs, which results in the formation of high-affinity binding sites for BNIP1 and p31. This R-SNARE-dependent Q-SNARE assembly is quite different from the assembly mechanisms of SNAREs localized in organelles other than the ER. The implication of the mechanism of ER SNARE assembly is discussed in the context of the physiological roles of the syntaxin 18 complex.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas R-SNARE/fisiologia , Proteínas SNARE/metabolismo , Ligação Proteica , Proteínas Qa-SNARE/metabolismo
11.
Mol Biol Cell ; 17(11): 4876-87, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16957052

RESUMO

The formation of transport vesicles that bud from endoplasmic reticulum (ER) exit sites is dependent on the COPII coat made up of three components: the small GTPase Sar1, the Sec23/24 complex, and the Sec13/31 complex. Here, we provide evidence that apoptosis-linked gene 2 (ALG-2), a Ca(2+)-binding protein of unknown function, regulates the COPII function at ER exit sites in mammalian cells. ALG-2 bound to the Pro-rich region of Sec31A, a ubiquitously expressed mammalian orthologue of yeast Sec31, in a Ca(2+)-dependent manner and colocalized with Sec31A at ER exit sites. A Ca(2+) binding-deficient ALG-2 mutant, which did not bind Sec31A, lost the ability to localize to ER exit sites. Overexpression of the Pro-rich region of Sec31A or RNA interference-mediated Sec31A depletion also abolished the ALG-2 localization at these sites. In contrast, depletion of ALG-2 substantially reduced the level of Sec31A associated with the membrane at ER exit sites. Finally, treatment with a cell-permeable Ca(2+) chelator caused the mislocalization of ALG-2, which was accompanied by a reduced level of Sec31A at ER exit sites. We conclude that ALG-2 is recruited to ER exit sites via Ca(2+)-dependent interaction with Sec31A and in turn stabilizes the localization of Sec31A at these sites.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Reguladoras de Apoptose/química , Brefeldina A/farmacologia , Proteínas de Ligação ao Cálcio/química , Proteínas de Ciclo Celular/metabolismo , Estruturas Citoplasmáticas/efeitos dos fármacos , Estruturas Citoplasmáticas/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Complexos Endossomais de Distribuição Requeridos para Transporte , Células HeLa , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Prolina/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno , Termodinâmica , Proteínas de Transporte Vesicular
12.
Mol Biol Cell ; 17(6): 2780-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16571679

RESUMO

RINT-1 was first identified as a Rad50-interacting protein that participates in radiation-induced G2/M checkpoint control. We have recently reported that RINT-1, together with the dynamitin-interacting protein ZW10 and others, is associated with syntaxin 18, an endoplasmic reticulum (ER)-localized SNARE involved in membrane trafficking between the ER and Golgi. To address the role of RINT-1 in membrane trafficking, we examined the effects of overexpression and knockdown of RINT-1 on Golgi morphology and protein transport from the ER. Overexpression of the N-terminal region of RINT-1, which is responsible for the interaction with ZW10, caused redistribution of ZW10. Concomitantly, ER-to-Golgi transport was blocked and the Golgi was dispersed. Knockdown of RINT-1 also disrupted membrane trafficking between the ER and Golgi. Notably, silencing of RINT-1 resulted in a reduction in the amount of ZW10 associated with syntaxin 18, concomitant with ZW10 redistribution. In contrast, no redistribution or release of RINT-1 from the syntaxin 18 complex was observed when ZW10 expression was reduced. These results taken together suggest that RINT-1 coordinates the localization and function of ZW10 by serving as a link between ZW10 and the SNARE complex comprising syntaxin 18.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Brefeldina A/farmacologia , Ciclo Celular , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Ligação Proteica , Transporte Proteico , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Dedos de Zinco
14.
Cell Death Dis ; 9(8): 797, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038238

RESUMO

DDHD2/KIAA0725p is a mammalian intracellular phospholipase A1 that exhibits phospholipase and lipase activities. Mutation of the DDHD2 gene causes hereditary spastic paraplegia (SPG54), an inherited neurological disorder characterized by lower limb spasticity and weakness. Although previous studies demonstrated lipid droplet accumulation in the brains of SPG54 patients and DDHD2 knockout mice, the cause of SPG54 remains elusive. Here, we show that ablation of DDHD2 in mice induces age-dependent apoptosis of motor neurons in the spinal cord. In vitro, motor neurons and embryonic fibroblasts from DDHD2 knockout mice fail to survive and are susceptible to apoptotic stimuli. Chemical and probe-based analysis revealed a substantial decrease in cardiolipin content and an increase in reactive oxygen species generation in DDHD2 knockout cells. Reactive oxygen species production in DDHD2 knockout cells was reversed by the expression of wild-type DDHD2, but not by an active-site DDHD2 mutant, DDHD2 mutants related to hereditary spastic paraplegia, or DDHD1, another member of the intracellular phospholipase A1 family whose mutation also causes spastic paraplegia (SPG28). Our results demonstrate the protective role of DDHD2 for mitochondrial integrity and provide a clue to the pathogenic mechanism of SPG54.


Assuntos
Apoptose , Fosfolipases A1/genética , Espécies Reativas de Oxigênio/metabolismo , Paraplegia Espástica Hereditária/patologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cardiolipinas/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Fosfolipases , Fosfolipases A1/deficiência , Paraplegia Espástica Hereditária/genética , Medula Espinal/metabolismo , Medula Espinal/patologia , Estaurosporina/farmacologia
15.
Mol Biol Cell ; 14(1): 262-73, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12529442

RESUMO

VCP/p97 is involved in a variety of cellular processes, including membrane fusion and ubiquitin-dependent protein degradation. It has been suggested that adaptor proteins such as p47 and Ufd1p confer functional versatility to VCP/p97. To identify novel adaptors, we searched for proteins that interact specifically with VCP/p97 by using the yeast two-hybrid system, and discovered a novel VCP/p97-interacting protein named small VCP/p97-interacting protein (SVIP). Rat SVIP is a 76-amino acid protein that contains two putative coiled-coil regions, and potential myristoylation and palmitoylation sites at the N terminus. Binding experiments revealed that the N-terminal coiled-coil region of SVIP, and the N-terminal and subsequent ATP-binding regions (ND1 domain) of VCP/p97, interact with each other. SVIP and previously identified adaptors p47 and ufd1p interact with VCP/p97 in a mutually exclusive manner. Overexpression of full-length SVIP or a truncated mutant did not markedly affect the structure of the Golgi apparatus, but caused extensive cell vacuolation reminiscent of that seen upon the expression of VCP/p97 mutants or polyglutamine proteins in neuronal cells. The vacuoles seemed to be derived from endoplasmic reticulum membranes. These results together suggest that SVIP is a novel VCP/p97 adaptor whose function is related to the integrity of the endoplasmic reticulum.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas de Protozoários/metabolismo , Vacúolos/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Ligação Proteica , Ratos , Técnicas do Sistema de Duplo-Híbrido
16.
Mol Biol Cell ; 15(12): 5712-23, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15469983

RESUMO

NVL (nuclear VCP-like protein), a member of the AAA-ATPase family, is known to exist in two forms with N-terminal extensions of different lengths in mammalian cells. Here, we show that they are localized differently in the nucleus; NVL2, the major species, is mainly present in the nucleolus, whereas NVL1 is nucleoplasmic. Mutational analysis demonstrated the presence of two nuclear localization signals in NVL2, one of which is shared with NVL1. In addition, a nucleolar localization signal was found to exist in the N-terminal extra region of NVL2. The nucleolar localization signal is critical for interaction with ribosomal protein L5, which was identified as a specific interaction partner of NVL2 on yeast two-hybrid screening. The interaction of NVL2 with L5 is ATP-dependent and likely contributes to the nucleolar translocation of NVL2. The physiological implication of this interaction was suggested by the finding that a dominant negative NVL2 mutant inhibits ribosome biosynthesis, which is known to take place in the nucleolus.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Nucléolo Celular/enzimologia , Sinais de Localização Nuclear/metabolismo , Proteínas Ribossômicas/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Transporte Ativo do Núcleo Celular , Adenosina Trifosfatases/genética , Linhagem Celular , Nucléolo Celular/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo
17.
FEBS Lett ; 580(27): 6464-70, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17101133

RESUMO

Abl interactor (Abi) was identified as an Abl tyrosine kinase-binding protein and subsequently shown to be a component of the macromolecular Abi/WAVE complex, which is a key regulator of Rac-dependent actin polymerization. Previous studies showed that Abi-1 promotes c-Abl-mediated phosphorylation of Mammalian Enabled (Mena) and WAVE2. In addition to Abi-1, mammals possess Abi-2 and NESH (Abi-3). In this study, we compared the three Abi proteins in terms of the promotion of c-Abl-mediated phosphorylation and the formation of Abi/WAVE complex. Although Abi-2, like Abi-1, promoted the c-Abl-mediated phosphorylation of Mena and WAVE2, NESH (Abi-3) had no such effect. This difference was likely due to their binding abilities as to c-Abl. Immunoprecipitation revealed that NESH (Abi-3) is present in the Abi/WAVE complex. Our results suggest that NESH (Abi-3), like Abi-1 and Abi-2, is a component of the Abi/WAVE complex, but likely plays a different role in the regulation of c-Abl.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexos Multiproteicos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Chlorocebus aethiops , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Proteínas dos Microfilamentos , Complexos Multiproteicos/genética , Fosforilação , Proteínas Proto-Oncogênicas c-abl/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética
18.
FEBS Lett ; 579(14): 2986-90, 2005 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-15893754

RESUMO

In previous work we showed that Abl interactor 1 (Abi-1), by linking enzyme and substrate, promotes the phosphorylation of Mammalian Enabled (Mena) by c-Abl. To determine whether this mechanism extends to other c-Abl substrates, we used the yeast two-hybrid system to search for proteins that interact with Abi-1. By screening a human leukocyte cDNA library, we identified BCAP (B-cell adaptor for phosphoinositide 3-kinase) as another Abi-1-interacting protein. Binding experiments revealed that the SH3 domain of Abi-1 and the C-terminal polyproline structure of BCAP are involved in interactions between the two. In cultured cells, Abi-1 promoted phosphorylation of BCAP not only by c-Abl but also by v-Abl. The phosphorylation sites of BCAP by c-Abl were mapped to five tyrosine residues in the C-terminal region that are well conserved in mammals. These results show that Abi-1 promotes Abl-mediated BCAP phosphorylation and suggest that Abi-1 in general coordinates kinase-substrate interactions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Linhagem Celular , Humanos , Proteínas Oncogênicas v-abl/metabolismo , Fosforilação , Fosfotirosina/genética , Fosfotirosina/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-abl/genética , Especificidade por Substrato
19.
Dev Cell ; 32(3): 304-17, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25619926

RESUMO

Recent evidence suggests that endoplasmic reticulum (ER) tubules mark the sites where the GTPase Drp1 promotes mitochondrial fission via a largely unknown mechanism. Here, we show that the SNARE protein syntaxin 17 (Syn17) is present on raft-like structures of ER-mitochondria contact sites and promotes mitochondrial fission by determining Drp1 localization and activity. The hairpin-like C-terminal hydrophobic domain, including Lys-254, but not the SNARE domain, is important for this regulation. Syn17 also regulates ER Ca(2+) homeostasis and interferes with Rab32-mediated regulation of mitochondrial dynamics. Starvation disrupts the Syn17-Drp1 interaction, thus favoring mitochondrial elongation during autophagy. Because we also demonstrate that Syn17 is an ancient SNARE, our findings suggest that Syn17 is one of the original key regulators for ER-mitochondria contact sites present in the last eukaryotic common ancestor. As such, Syn17 acts as a switch that responds to nutrient conditions and integrates functions for the ER and autophagosomes with mitochondrial dynamics.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Qa-SNARE/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Proteínas Mitocondriais/metabolismo , Fagossomos/metabolismo
20.
Sci Rep ; 4: 7132, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25417924

RESUMO

Autosomal recessive cerebellar ataxias and autosomal recessive hereditary spastic paraplegias (ARHSPs) are clinically and genetically heterogeneous neurological disorders. Herein we describe Japanese siblings with a midlife-onset, slowly progressive type of cerebellar ataxia and spastic paraplegia, without intellectual disability. Using whole exome sequencing, we identified a homozygous missense mutation in DDHD2, whose mutations were recently identified as the cause of early-onset ARHSP with intellectual disability. Brain MRI of the patient showed a thin corpus callosum. Cerebral proton magnetic resonance spectroscopy revealed an abnormal lipid peak in the basal ganglia, which has been reported as the hallmark of DDHD2-related ARHSP (SPG 54). The mutation caused a marked reduction of phospholipase A1 activity, supporting that this mutation is the cause of SPG54. Our cases indicate that the possibility of SPG54 should also be considered when patients show a combination of adult-onset spastic ataxia and a thin corpus callosum. Magnetic resonance spectroscopy may be helpful in the differential diagnosis of patients with spastic ataxia phenotype.


Assuntos
Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Espasticidade Muscular/epidemiologia , Espasticidade Muscular/genética , Atrofia Óptica/epidemiologia , Atrofia Óptica/genética , Fosfolipases/genética , Ataxias Espinocerebelares/epidemiologia , Ataxias Espinocerebelares/genética , Idade de Início , Idoso , Encéfalo/diagnóstico por imagem , Feminino , Frequência do Gene , Homozigoto , Humanos , Deficiência Intelectual/patologia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Espasticidade Muscular/patologia , Mutação de Sentido Incorreto , Atrofia Óptica/patologia , Linhagem , Fenótipo , Fosfolipases/química , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Radiografia , Análise de Sequência de DNA , Ataxias Espinocerebelares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA