Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(18): 4913-4919, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38684076

RESUMO

Raman optical activity (ROA) spectroscopy exhibits significant potential in the study of (bio)molecules as it encodes information on their molecular structure, chirality, and conformations. Furthermore, the method reveals details on excited electronic states when applied under resonance conditions. Here, we present a combined study of the far from resonance (FFR)-ROA and resonance ROA (RROA) of a single relatively small molecular system. Notably, this study is the first to employ the density functional theory (DFT) analysis of both FFR-ROA and RROA spectra. This is illustrated for cobalamin derivatives using near-infrared and visible light excitation. Although the commonly observed monosignate RROA spectra lose additional information visible in bisignate nonresonance ROA spectra, the RROA technique acts as a complement to nonresonance ROA spectroscopy. In particular, the combination of these methods integrated with DFT calculations can reveal a complete spectral picture of the structural and conformational differences between tested compounds.

2.
ACS Omega ; 6(11): 7829-7833, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33778294

RESUMO

Raman spectroscopy is a powerful technique for a wide range of materials, including porcelain, and near-infrared excitation is often used to suppress a fluorescence background from a sample. When we measured the Raman spectra of porcelains at 785 nm excitation, we observed a strong broad band in a high-frequency region, and its origin was not clearly elucidated. In this study, we have measured the spectra of glazed porcelains at 532, 785, and 1064 nm excitation and demonstrated that the broad feature originates from luminescence around 880 nm and not from Raman scattering. We provide experimental evidence showing that the band originates from a thin layer of glaze. Since the band shape depends on the processing temperature, the luminescence spectra can be a nondestructive probe for studying the glass formation of a glaze.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA