Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(40): e2301014, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37267942

RESUMO

Hybrid organic-inorganic perovskites (HOIPs) have shown great promise in a wide range of optoelectronic applications. However, this performance is inhibited by the sensitivity of HOIPs to various environmental factors, particularly high levels of relative humidity. This study uses X-ray photoelectron spectroscopy (XPS) to determine that there is essentially no threshold to water adsorption on the in situ cleaved MAPbBr3 (001) single crystal surface. Using scanning tunneling microscopy (STM), it shows that the initial surface restructuring upon exposure to water vapor occurs in isolated regions, which grow in area with increasing exposure, providing insight into the initial degradation mechanism of HOIPs. The electronic structure evolution of the surface was also monitored via ultraviolet photoemission spectroscopy (UPS), evidencing an increased bandgap state density following water vapor exposure, which is attributed to surface defect formation due to lattice swelling. This study will help to inform the surface engineering and designs of future perovskite-based optoelectronic devices.

2.
J Phys Chem Lett ; 13(2): 559-566, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35014263

RESUMO

Exploiting the availability of solar energy to produce valuable chemicals is imperative in our quest for a sustainable energy cycle. TiO2 has emerged as an efficient photocatalyst, and as such its photochemistry has been studied extensively. It is well-known that polaronic defect states impact the activity of this chemistry. As such, understanding the fundamental excitation mechanisms deserves the attention of the scientific community. However, isolating the contribution of polarons to these processes has required increasingly creative experimental techniques and expensive theory. In this Perspective, we discuss recent advances in this field, with a particular focus on two-photon photoemission spectroscopy (2PPE) and density functional theory (DFT), and discuss the implications for photocatalysis.

3.
J Phys Chem C Nanomater Interfaces ; 125(26): 14348-14355, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267854

RESUMO

Two polymorphs of TiO2, anatase and rutile, are employed in photocatalytic applications. It is broadly accepted that anatase is the more catalytically active and subsequently finds wider commercial use. In this work, we focus on the Ti3+ polaronic states of anatase TiO2(101), which lie at ∼1.0 eV binding energy and are known to increase catalytic performance. Using UV-photoemission and two-photon photoemission spectroscopies, we demonstrate the capability to tune the excited state resonance of polarons by controlling the chemical environment. Anatase TiO2(101) contains subsurface polarons which undergo sub-band-gap photoexcitation to states ∼2.0 eV above the Fermi level. Formic acid adsorption dramatically influences the polaronic states, increasing the binding energy by ∼0.3 eV. Moreover, the photoexcitation oscillator strength changes significantly, resonating with states ∼3.0 eV above the Fermi level. We show that this behavior is likely due to the surface migration of subsurface oxygen vacancies.

4.
J Phys Chem Lett ; 12(14): 3571-3576, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819053

RESUMO

Understanding how adsorbates influence polaron behavior is of fundamental importance in describing the catalytic properties of TiO2. Carboxylic acids adsorb readily at TiO2 surfaces, yet their influence on polaronic states is unknown. Using UV photoemission spectroscopy (UPS), two-photon photoemission spectroscopy (2PPE), and density functional theory (DFT) we show that dissociative adsorption of formic and acetic acids has profound, yet different, effects on the surface density, crystal field, and photoexcitation of polarons in rutile TiO2(110). We also show that these variations are governed by the contrasting electrostatic properties of the acids, which impacts the extent of polaron-adsorbate coupling. The density of polarons in the surface region increases more in formate-terminated TiO2(110) relative to acetate. Consequently, increased coupling gives rise to new photoexcitation channels via states 3.83 eV above the Fermi level. The onset of this process is 3.45 eV, likely adding to the catalytic photoyield.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA