RESUMO
Fermentation is thought to alter the composition and bioavailability of bioactive compounds in rice bran. However, how this process affects the anti-inflammatory effects of rice bran and the bioactive compounds that might participate in this function is yet to be elucidated. This study aimed to isolate bioactive compounds in fermented rice bran that play a key role in its anti-inflammatory function. The fermented rice bran was fractionated using a succession of solvent and solid-phase extractions. The fermented rice bran fractions were then applied to lipopolysaccharide (LPS)-activated murine macrophages to evaluate their anti-inflammatory activity. The hot water fractions (FRBA), 50% ethanol fractions (FRBB), and n-hexane fractions (FRBC) were all shown to be able to suppress the pro-inflammatory cytokine expression from LPS-stimulated RAW 264.7 cells. Subsequent fractions from the hot water fraction (FRBF and FRBE) were also able to reduce the inflammatory response of these cells to LPS. Further investigation revealed that tryptamine, a bacterial metabolite of tryptophan, was abundantly present in these extracts. These results indicate that tryptamine may play an important role in the anti-inflammatory effects of fermented rice bran. Furthermore, the anti-inflammatory effects of FRBE and tryptamine may depend on the activity of the aryl hydrocarbon receptor.
Assuntos
Lipopolissacarídeos , Oryza , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Etanol/farmacologia , Inflamação , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , Oryza/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Solventes/metabolismo , Triptaminas/metabolismo , Triptaminas/farmacologia , Triptofano/metabolismo , Água/metabolismoRESUMO
Acute kidney injury (AKI) is a major complication of sepsis. Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes are multiprotein complexes that mediate septic AKI. L-arginine (Arg) is a conditionally essential amino acid in catabolic conditions and a substrate for nitric oxide (NO) production; however, its use in sepsis is controversial. This study investigated the effect of intravenous Arg supplementation on modulating NLRP3 inflammasome activity in relation to septic AKI. Mice were divided into normal control (NC), sham, sepsis saline (SS), and sepsis Arg (SA) groups. In order to investigate the role of NO, L-N6-(1-iminoethyl)-lysine hydrochloride (L-NIL), an inducible NO synthase inhibitor, was administered to the sepsis groups. Sepsis was induced using cecal ligation and puncture (CLP). The SS and SA groups received saline or Arg via tail vein 1 h after CLP. Mice were sacrificed at 6, 12, and 24 h after sepsis. The results showed that compared to the NC group, septic mice had higher plasma kidney function parameters and lower Arg levels. Also, renal NLRP3 inflammasome protein expression and tubular injury score increased. After Arg treatment, plasma Arg and NO levels increased, kidney function improved, and expressions of renal NLRP3 inflammasome-related proteins were downregulated. Changes in plasma NO and renal NLRP3 inflammasome-related protein expression were abrogated when L-NIL was given to the Arg sepsis groups. Arg plus L-NIL administration also attenuated kidney injury after CLP. The findings suggest that intravenous Arg supplementation immediately after sepsis restores plasma Arg levels and is beneficial for attenuating septic AKI, partly via NO-mediated NLRP3 inflammasome inhibition.
Assuntos
Injúria Renal Aguda/terapia , Arginina/administração & dosagem , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sepse/microbiologia , Injúria Renal Aguda/metabolismo , Administração Intravenosa , Animais , Proteínas de Transporte/metabolismo , Regulação para Baixo , Rim/metabolismo , Peroxidação de Lipídeos , Peróxidos Lipídicos/metabolismo , Lisina/análogos & derivados , Lisina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/sangue , Óxido Nítrico/metabolismo , Fatores de TempoRESUMO
This study investigated the effects of a single dose of arginine (Arg) administration at the beginning of sepsis on CD4+ T-cell regulation and liver inflammation in C57BL/6J mice. Mice were divided into normal control (NC), sham (SH), sepsis saline (SS), and sepsis Arg (SA) groups. An inducible nitric oxide (NO) synthase (iNOS) inhibitor was administered to additional sepsis groups to evaluate the role of NO during sepsis. Sepsis was induced using cecal ligation and puncture (CLP). The SS and SA groups received saline or Arg (300 mg/kg body weight) via tail vein 1 h after CLP. Mice were euthanized at 12 and 24 h post-CLP. Blood, para-aortic lymph nodes, and liver tissues were collected for further measurement. The findings showed that sepsis resulted in decreases in blood and para-aortic lymph node CD4+ T-cell percentages, whereas percentages of interleukin (IL)-4- and IL-17-expressing CD4+ T cells were upregulated. Compared to the SS group, Arg administration resulted in maintained circulating and para-aortic lymph node CD4+ T cells, an increased Th1/Th2 ratio, and a reduced Th17/Treg ratio post-CLP. In addition, levels of plasma liver injury markers and expression of inflammatory genes in liver decreased. These results suggest that a single dose of Arg administered after CLP increased Arg availability, sustained CD4+ T-cell populations, elicited more-balanced Th1/Th2/Th17/Treg polarization in the circulation and the para-aortic lymph nodes, and attenuated liver inflammation in sepsis. The favorable effects of Arg were abrogated when an iNOS inhibitor was administered, which indicated that NO may be participated in regulating the homeostasis of Th/Treg cells and subsequent liver inflammation during sepsis.