Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 9(8): 1411-1423, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12237389

RESUMO

Tobacco lines expressing transgenes that encode tobacco etch virus (TEV) coat protein (CP) mRNA with or without nonsense codons give rise to TEV-resistant tissues that have reduced levels of TEV CP mRNA while maintaining high levels of transgene transcriptional activity. Two phenotypes for virus resistance in the lines containing the transgene have been described: immune (no virus infection) and recovery (initial systemic symptoms followed by gradual recovery over several weeks). Here, we show that at early times in development, immune lines are susceptible to TEV infection and accumulate full-length CP mRNA. Therefore, immune lines also exhibit meiotic resetting, as is seen in the recovery lines, providing molecular evidence for a common mechanism of gene silencing and virus resistance in both cases. We also investigated the characteristics of two sets of low molecular weight RNAs that appear only in silenced tissue. One set has nearly intact 5[prime] ends, lacks poly(A) tails, and is associated with polyribosomes; the second set contains the 3[prime] end of the mRNA. Treating silenced leaf tissue with cycloheximide resulted in decreased levels of full-length mRNA and an increase in the levels of the low molecular weight RNAs, supporting a cytoplasmic decay mechanism that does not require ongoing translation. Surprisingly, mRNA from the transgene containing nonsense codons was associated with more ribosomes than expected, possibly resulting from translation from a start codon downstream of the introduced translational stop codons. We present a hypothesis for transgene/viral RNA degradation in which RNA degradation occurs in the cytoplasm while in association with polyribosomes.

2.
Mol Cell Biol ; 14(4): 2640-50, 1994 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8139564

RESUMO

The mRNA encoding the soybean rbcS gene, SRS4, is degraded into a set of discrete lower-molecular-weight products in light-grown soybean seedlings and in transgenic petunia leaves. The 5'-proximal products have intact 5' ends, lack poly(A) tails, lack various amounts of 3'-end sequences, and are found at higher concentrations in the polysomal fraction. To study the mechanisms of SRS4 mRNA decay more closely, we developed a cell-free RNA degradation system based on a polysomal fraction isolated from soybean seedlings or mature petunia leaves. In the soybean in vitro degradation system, endogenous SRS4 mRNA and proximal product levels decreased over a 6-h time course. When full-length in vitro-synthesized SRS4 RNAs were added to either in vitro degradation system, the RNAs were degraded into the expected set of proximal products, such as those observed for total endogenous RNA samples. When exogenously added SRS4 RNAs already truncated at their 3' ends were added to either system, they too were degraded into the expected subset of proximal products. A set of distal fragments containing intact 3' ends and lacking various portions of 5'-end sequences were identified in vivo when the heterogeneous 3' ends of the SRS4 RNAs were removed by oligonucleotide-directed RNase H cleavage. Significant amounts of distal fragments which comigrated with the in vivo products were also observed when exogenous SRS4 RNAs were degraded in either in vitro system. These proximal and distal products lacking various portions of their 3' and 5' sequences, respectively, were generated in essentially a random order, a result supporting a nonprocessive mechanism. Tagging of the in vitro-synthesized RNAs on their 5' and 3' ends with plasmid vector sequences or truncation of the 3' end had no apparent effect on the degradation pattern. Therefore, RNA sequences and/or structures in the immediate vicinity of each 3' end point may be important in the degradation machinery. Together, these data suggest that SRS4 mRNA is degraded by a stochastic mechanism and that endonucleolytic cleavage may be the initial event. These plant in vitro systems should be useful in identifying the cis- and trans-acting factors involved in the degradation of mRNAs.


Assuntos
Glycine max/enzimologia , RNA Mensageiro/metabolismo , Ribulose-Bifosfato Carboxilase/biossíntese , Transcrição Gênica , Sequência de Bases , Genes de Plantas , Cinética , Substâncias Macromoleculares , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Polirribossomos/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/isolamento & purificação , Ribonuclease H , Glycine max/genética , Especificidade da Espécie , Moldes Genéticos
3.
Mol Cell Biol ; 15(12): 6641-52, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8524229

RESUMO

The degradation of the soybean SRS4 mRNA, which encodes the small subunit of ribulose-1,5-bisphosphate carboxylase, yields a set of proximal (5' intact) and distal (3' intact) products both in vivo and in vitro. These products are generated by endonucleolytic cleavages that occur essentially in a random order, although some products are produced more rapidly than others. Comparison of sizes of products on Northern (RNA) blots showed that the combined sizes of pairs of proximal and distal products form contiguous full-length SRS4 mRNAs. When the 3' ends of the proximal products and the 5' ends of the distal products were mapped by S1 nuclease and primer extension assays, respectively, both sets of ends mapped to the same sequences within the SRS4 mRNA. A small in vitro-synthesized RNA fragment containing one cleavage site inhibited cleavage of all major sites, equivalently consistent with one enzymatic activity generating the endonucleolytic cleavage products. These products were rich in GU nucleotides, but no obvious consensus sequence was found among several cleavage sites. Preliminary evidence suggested that secondary structure could play a role in site selection. The structures of the 5' ends of the proximal products and the 3' ends of the distal products were examined. Proximal products were found with approximately equal frequency in both m7G cap(+) and m7G cap(-) fractions, suggesting that the endonucleolytic cleavage events occurred independently of the removal of the 5' cap structure. Distal products were distributed among fractions with poly(A) tails ranging from undetectable to greater than 100 nucleotides in length, suggesting that the endonucleolytic cleavage events occurred independently of poly(A) tail shortening. Together, these data support a stochastic endonuclease model in which an endonucleolytic cleavage event is the initial step in SRS4 mRNA degradation.


Assuntos
Endorribonucleases/metabolismo , Glycine max/enzimologia , RNA Mensageiro/metabolismo , Ribulose-Bifosfato Carboxilase/biossíntese , Sequência de Bases , Northern Blotting , Primers do DNA , Genes de Plantas , Substâncias Macromoleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína , RNA de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/química , Glycine max/genética , Especificidade por Substrato , Transcrição Gênica
4.
Plant Cell ; 4(1): 47-58, 1992 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-1356050

RESUMO

The degradation of a soybean ribulose-1,5-bisphosphate carboxylase small subunit RNA, SRS4, was investigated in soybean seedlings and in petunia plants transformed with an SRS4 gene construct. Polyacrylamide RNA gel blot, primer extension, and S1 nuclease analyses were used to identify and map fragments of the SRS4 mRNA generated in vivo. We showed that SRS4 mRNA is degraded to a characteristic set of fragments in soybean and transgenic petunia and that degradation is not dependent on position of insertion of the gene construct within the genome, on the expression level of the SRS4 mRNA, or on the rbcS promoter. Degradation products lacked poly(A) tails and fractionated with poly(A)-depleted RNA on oligo(dT)-sepharose columns. These products pelleted with polysomes and were released from polysomes prepared with EDTA. Sequences at the 5' end of the SRS4 mRNA were more stable than those at the 3' end of the mRNA. Three models for SRS4 mRNA degradation involving endonucleolytic and exonucleolytic degradation were presented to explain the origin of the 5' proximal fragments.


Assuntos
Plantas/metabolismo , RNA Mensageiro/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Sequência de Bases , Ácido Edético/farmacologia , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos , Plantas Geneticamente Modificadas/genética , Poli A/metabolismo , Polirribossomos/efeitos dos fármacos , Polirribossomos/metabolismo , Glycine max/metabolismo
5.
Proc Natl Acad Sci U S A ; 98(9): 5110-5, 2001 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-11296265

RESUMO

Filamentous fungi are a large group of diverse and economically important microorganisms. Large-scale gene disruption strategies developed in budding yeast are not applicable to these organisms because of their larger genomes and lower rate of targeted integration (TI) during transformation. We developed transposon-arrayed gene knockouts (TAGKO) to discover genes and simultaneously create gene disruption cassettes for subsequent transformation and mutant analysis. Transposons carrying a bacterial and fungal drug resistance marker are used to mutagenize individual cosmids or entire libraries in vitro. Cosmids are annotated by DNA sequence analysis at the transposon insertion sites, and cosmid inserts are liberated to direct insertional mutagenesis events in the genome. Based on saturation analysis of a cosmid insert and insertions in a fungal cosmid library, we show that TAGKO can be used to rapidly identify and mutate genes. We further show that insertions can create alterations in gene expression, and we have used this approach to investigate an amino acid oxidation pathway in two important fungal phytopathogens.


Assuntos
Ascomicetos/genética , Genes Fúngicos/genética , Madurella/genética , Alelos , Clonagem Molecular , Cosmídeos/genética , Produtos Agrícolas/microbiologia , Elementos de DNA Transponíveis/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/fisiologia , Biblioteca Genômica , Mutagênese Insercional/genética , Mutagênese Sítio-Dirigida/genética , Fenótipo , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA