Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 82(5): 813-827, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29059709

RESUMO

OBJECTIVE: Mutations in ABCD1 cause the neurodegenerative disease, adrenoleukodystrophy, which manifests as the spinal cord axonopathy adrenomyeloneuropathy (AMN) in nearly all males surviving into adulthood. Microglial dysfunction has long been implicated in pathogenesis of brain disease, but its role in the spinal cord is unclear. METHODS: We assessed spinal cord microglia in humans and mice with AMN and investigated the role of ABCD1 in microglial activity toward neuronal phagocytosis in cell culture. Because mutations in ABCD1 lead to incorporation of very-long-chain fatty acids into phospholipids, we separately examined the effects of lysophosphatidylcholine (LPC) upon microglia. RESULTS: Within the spinal cord of humans and mice with AMN, upregulation of several phagocytosis-related markers, such as MFGE8 and TREM2, precedes complement activation and synapse loss. Unexpectedly, this occurs in the absence of overt inflammation. LPC C26:0 added to ABCD1-deficient microglia in culture further enhances MFGE8 expression, aggravates phagocytosis, and leads to neuronal injury. Furthermore, exposure to a MFGE8-blocking antibody reduces phagocytic activity. INTERPRETATION: Spinal cord microglia lacking ABCD1 are primed for phagocytosis, affecting neurons within an altered metabolic milieu. Blocking phagocytosis or specific phagocytic receptors may alleviate synapse loss and axonal degeneration. Ann Neurol 2017;82:813-827.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/fisiologia , Adrenoleucodistrofia/fisiopatologia , Microglia/fisiologia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Anticorpos/imunologia , Antígenos de Superfície/biossíntese , Antígenos de Superfície/imunologia , Estudos de Casos e Controles , Células Cultivadas , Técnicas de Cocultura , Expressão Gênica/efeitos dos fármacos , Humanos , Lisofosfatidilcolinas/farmacologia , Glicoproteínas de Membrana/biossíntese , Camundongos Knockout , Microglia/efeitos dos fármacos , Proteínas do Leite/biossíntese , Proteínas do Leite/imunologia , Neurônios/fisiologia , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Cultura Primária de Células , Receptores Imunológicos/biossíntese , Medula Espinal/fisiologia
2.
Alzheimers Dement (N Y) ; 3(4): 622-635, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29201996

RESUMO

INTRODUCTION: We are developing a second generation 8-OH quinoline (2-(dimethylamino) methyl-5, 7-dichloro-8-hydroxyquinoline [PBT2, Prana Biotechnology]) for targeting amyloid ß (Aß) in Alzheimer's disease (AD). In an earlier phase IIa, 3 month trial, PBT2 lowered cerebrospinal fluid Aß by 13% and improved cognition (executive function) in a dose-related fashion in early AD. We, therefore, sought to learn whether PBT2 could alter the Aß-PET signal in subjects with prodromal or mild AD, in an exploratory randomized study over a 12-month phase in a double-blind and a 12-month open label extension phase trial design. METHODS: For inclusion, the usual clinical criteria for prodromal or probable AD, Mini-Mental State Examination ≥20, and global Pittsburgh compound B (PiB)-PET standardized uptake volume ratio (SUVR) >1.7 were used. As this was an exploratory study, we included contemporaneous matched control data from the Australian Imaging Biomarker and Lifestyle Study (AIBL). Other measures included fluorodeoxyglucose-positron emission tomography, magnetic resonance imaging volumetrics, blood Aß biomarkers, and cognition and function. RESULTS: Forty subjects completed the first 12-month double-blind phase (placebo = 15, PBT2 = 25), and 27 subjects completed the 12-month open label extension phase (placebo = 11, PBT2 = 16). Overall, PTB2 250 mg/day was safe and well tolerated. The mean PiB-PET SUVR at baseline was 2.51 ± 0.59. After adjusting for baseline SUVR, in the double-blind phase, the placebo group showed a nonsignificant decline in PiB-PET SUVR, whereas the PBT2 group declined significantly (P = .048). Subjects who did not enter or complete the extension study had a significantly higher 12-month Aß-PET SUVR (2.68 ± 0.55) compared with those who completed (2.29 ± 0.48). Both groups differed significantly from the rate of change over 12 months in the AIBL control group. In the open label 12-month extension study, the PiB-SUVR stabilized. There were no significant differences between PBT2 and controls in fluorodeoxyglucose-positron emission tomography, magnetic resonance imaging volumetrics, blood Aß biomarkers, or cognition/function over the course of the double-blind phase. DISCUSSION: There was no significant difference between PBT2 and controls at 12 months, likely due to the large individual variances over a relatively small number of subjects. PBT2 was associated with a significant 3% PiB-PET SUVR decline in the double-blind phase and a stabilization of SUVR in the open-label phase. From this exploratory study, we have learned that the entry criterion of SUVR should have been set at ≥ 1.5 and <2.0, where we know from the AIBL study that subjects in this band are accumulating Aß in a linear fashion and that subjects who withdrew from this type of study have much higher SUVRs, which if not taken into account, could distort the final results. Because of large individual variations in SUVR, future studies of PBT2 will require larger numbers of subjects (n > 90 per arm) over a longer period (18 months or more). Further evaluation of higher doses of PBT2 in earlier stages of AD is warranted. TRIAL REGISTRATION: ACTRN 12611001008910 and ACTRN 12613000777796.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA