Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 430(6996): 235-40, 2004 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15241420

RESUMO

The peptide GsMTx4, isolated from the venom of the tarantula Grammostola spatulata, is a selective inhibitor of stretch-activated cation channels (SACs). The mechanism of inhibition remains unknown; but both GsMTx4 and its enantiomer, enGsMTx4, modify the gating of SACs, thus violating a trademark of the traditional lock-and-key model of ligand-protein interactions. Suspecting a bilayer-dependent mechanism, we examined the effect of GsMTx4 and enGsMTx4 on gramicidin A (gA) channel gating. Both peptides are active, and the effect increases with the degree of hydrophobic mismatch between bilayer thickness and channel length, meaning that GsMTx4 decreases the energy required to deform the boundary lipids adjacent to the channel. GsMTx4 decreases inward SAC single-channel currents but has no effect on outward currents, suggesting it is located within a Debye length of the outer vestibule of the SACs, but significantly farther from the inner vestibule. Likewise, GsMTx4 decreases gA single-channel currents. Our results suggest that modulation of membrane proteins by amphipathic peptides--mechanopharmacology--involves not only the protein itself but also the surrounding lipids. The surprising efficacy of the d form of GsMTx4 peptide has important therapeutic implications, because d peptides are not hydrolysed by endogenous proteases and may be administered orally.


Assuntos
Gramicidina/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/antagonistas & inibidores , Bicamadas Lipídicas/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Astrócitos , Cátions/metabolismo , Galinhas , Condutividade Elétrica , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Miocárdio/citologia , Técnicas de Patch-Clamp , Ratos , Venenos de Aranha/química , Estereoisomerismo
2.
J Gen Physiol ; 123(5): 599-621, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15111647

RESUMO

Membrane proteins are regulated by the lipid bilayer composition. Specific lipid-protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel-bilayer hydrophobic interactions link a "conformational" change (the monomer<-->dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (beta-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer-protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function.


Assuntos
Membrana Celular/fisiologia , Colesterol/metabolismo , Bicamadas Lipídicas/metabolismo , Mecanotransdução Celular/fisiologia , Fluidez de Membrana/fisiologia , Potenciais da Membrana/fisiologia , Canais de Sódio/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Elasticidade , Gramicidina/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Rim/efeitos dos fármacos , Rim/fisiologia , Mecanotransdução Celular/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Micelas , Canais de Sódio/efeitos dos fármacos , Tensoativos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA