Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 13(10): 1096-1101, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28805800

RESUMO

Kinetochores act as hubs for multiple activities during cell division, including microtubule interactions and spindle checkpoint signaling. Each kinetochore can act autonomously, and activities change rapidly as proteins are recruited to, or removed from, kinetochores. Understanding this dynamic system requires tools that can manipulate kinetochores on biologically relevant temporal and spatial scales. Optogenetic approaches have the potential to provide temporal and spatial control with molecular specificity. Here we report new chemical inducers of protein dimerization that allow us to both recruit proteins to and release them from kinetochores using light. We use these dimerizers to manipulate checkpoint signaling and molecular motor activity. Our findings demonstrate specialized properties of the CENP-E (kinesin-7) motor for directional chromosome transport to the spindle equator and for maintenance of metaphase alignment. This work establishes a foundation for optogenetic control of kinetochore function, which is broadly applicable to experimental probing of other dynamic cellular processes.


Assuntos
Cinetocoros/metabolismo , Optogenética/métodos , Sobrevivência Celular , Células HeLa , Humanos , Cinetocoros/química , Células Tumorais Cultivadas
2.
Biophys J ; 114(11): 2640-2652, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874614

RESUMO

Coiled-coil stalks of various kinesins differ significantly in predicted length and structure; this is an adaption that helps these motors carry out their specialized functions. However, little is known about the dynamic stalk configuration in moving motors. To gain insight into the conformational properties of the transporting motors, we developed a theoretical model to predict Brownian motion of a microbead tethered to the tail of a single, freely walking molecule. This approach, which we call the tethered cargo motion (TCM) assay, provides an accurate measure of the mechanical properties of motor-cargo tethering, verified using kinesin-1 conjugated to a microbead via DNA links in vitro. Applying the TCM assay to the mitotic kinesin CENP-E unexpectedly revealed that when walking along a microtubule track, this highly elongated molecule with a contour length of 230 nm formed a 20-nm-long tether. The stalk of a walking CENP-E could not be extended fully by application of sideways force with optical tweezers (up to 4 pN), implying that CENP-E carries its cargo in a compact configuration. Assisting force applied along the microtubule track accelerates CENP-E walking, but this increase does not depend on the presence of the CENP-E stalk. Our results suggest that the unusually large stalk of CENP-E has little role in regulating its function as a transporter. The adjustable stalk configuration may represent a regulatory mechanism for controlling the physical reach between kinetochore-bound CENP-E and spindle microtubules, or it may assist localizing various kinetochore regulators in the immediate vicinity of the kinetochore-embedded microtubule ends. The TCM assay and underlying theoretical framework will provide a general guide for determining the dynamic configurations of various molecular motors moving along their tracks, freely or under force.


Assuntos
Cinesinas/metabolismo , Mitose , Movimento , Pinças Ópticas , Fenômenos Biomecânicos , Segregação de Cromossomos
3.
Nat Cell Biol ; 26(1): 45-56, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168769

RESUMO

To faithfully segregate chromosomes during vertebrate mitosis, kinetochore-microtubule interactions must be restricted to a single site on each chromosome. Prior work on pair-wise kinetochore protein interactions has been unable to identify the mechanisms that prevent outer kinetochore formation in regions with a low density of CENP-A nucleosomes. To investigate the impact of higher-order assembly on kinetochore formation, we generated oligomers of the inner kinetochore protein CENP-T using two distinct, genetically engineered systems in human cells. Although individual CENP-T molecules interact poorly with outer kinetochore proteins, oligomers that mimic centromeric CENP-T density trigger the robust formation of functional, cytoplasmic kinetochore-like particles. Both in cells and in vitro, each molecule of oligomerized CENP-T recruits substantially higher levels of outer kinetochore components than monomeric CENP-T molecules. Our work suggests that the density dependence of CENP-T restricts outer kinetochore recruitment to centromeres, where densely packed CENP-A recruits a high local concentration of inner kinetochore proteins.


Assuntos
Proteínas Cromossômicas não Histona , Cinetocoros , Humanos , Proteína Centromérica A/genética , Cinetocoros/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Centrômero/genética , Centrômero/metabolismo , Nucleossomos , Mitose
4.
bioRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464265

RESUMO

Formation of macromolecular cellular structures relies on recruitment of multiple proteins, requiring the precisely controlled pairwise binding interactions. At human kinetochores, our recent work found that the high molecular density environment enables strong bonding between the Ndc80 complex and its two binding sites at the CENP-T receptor. However, the mechanistic basis for this unusual density-dependent facilitation remains unknown. Here, using quantitative single-molecule approaches, we reveal two distinct mechanisms that drive preferential recruitment of the Ndc80 complex to higher-order structures of CENP-T, as opposed to CENP-T monomers. First, the Ndc80 binding sites within the disordered tail of the CENP-T mature over time, leading to a stronger grip on the Spc24/25 heads of the Ndc80 complexes. Second, the maturation of Ndc80 binding sites is accelerated when CENP-T molecules are clustered in close proximity. The rates of the clustering-induced maturation are remarkably different for two binding sites within CENP-T, correlating with different interfaces formed by the corresponding CENP-T sequences as they wrap around the Spc24/25 heads. The differential clustering-dependent regulation of these sites is preserved in dividing human cells, suggesting a distinct regulatory entry point to control kinetochore-microtubule interactions. The tunable acceleration of slowly maturing binding sites by a high molecular-density environment may represent a fundamental physicochemical mechanism to assist the assembly of mitotic kinetochores and other macromolecular structures.

5.
Mol Biol Cell ; 32(13): 1241-1255, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33956511

RESUMO

Mitotic kinetochores assemble via the hierarchical recruitment of numerous cytosolic components to the centromere region of each chromosome. However, how these orderly and localized interactions are achieved without spurious macromolecular assemblies forming from soluble kinetochore components in the cell cytosol remains poorly understood. We developed assembly assays to monitor the recruitment of green fluorescent protein-tagged recombinant proteins and native proteins from human cell extracts to inner kinetochore components immobilized on microbeads. In contrast to prior work in yeast and Xenopus egg extracts, we find that human mitotic cell extracts fail to support de novo assembly of microtubule-binding subcomplexes. A subset of interactions, such as those between CENP-A-containing nucleosomes and CENP-C, are permissive under these conditions. However, the subsequent phospho-dependent binding of the Mis12 complex is less efficient, whereas recruitment of the Ndc80 complex is blocked, leading to weak microtubule-binding activity of assembled particles. Using molecular variants of the Ndc80 complex, we show that auto-inhibition of native Ndc80 complex restricts its ability to bind to the CENP-T/W complex, whereas inhibition of the Ndc80 microtubule binding is driven by a different mechanism. Together, our work reveals regulatory mechanisms that guard against the spurious formation of cytosolic microtubule-binding kinetochore particles.


Assuntos
Centrômero/metabolismo , Cinetocoros/metabolismo , Mitose/fisiologia , Extratos Celulares , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo
6.
Nat Commun ; 10(1): 1673, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975984

RESUMO

Accurate chromosome segregation relies on microtubule end conversion, the ill-understood ability of kinetochores to transit from lateral microtubule attachment to durable association with dynamic microtubule plus-ends. The molecular requirements for this conversion and the underlying biophysical mechanisms are elusive. We reconstituted end conversion in vitro using two kinetochore components: the plus end-directed kinesin CENP-E and microtubule-binding Ndc80 complex, combined on the surface of a microbead. The primary role of CENP-E is to ensure close proximity between Ndc80 complexes and the microtubule plus-end, whereas Ndc80 complexes provide lasting microtubule association by diffusing on the microtubule wall near its tip. Together, these proteins mediate robust plus-end coupling during several rounds of microtubule dynamics, in the absence of any specialized tip-binding or regulatory proteins. Using a Brownian dynamics model, we show that end conversion is an emergent property of multimolecular ensembles of microtubule wall-binding proteins with finely tuned force-dependent motility characteristics.


Assuntos
Segregação de Cromossomos , Cinesinas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/isolamento & purificação , Proteínas Cromossômicas não Histona/metabolismo , Proteínas do Citoesqueleto , Microscopia de Fluorescência , Modelos Biológicos , Dinâmica não Linear , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Sf9 , Imagem Individual de Molécula , Processos Estocásticos , Proteínas de Xenopus/genética , Proteínas de Xenopus/isolamento & purificação , Proteínas de Xenopus/metabolismo
7.
Methods Cell Biol ; 144: 307-327, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29804674

RESUMO

During mitosis, kinetochores often bind to the walls of spindle microtubules, but these lateral interactions are then converted into a different binding mode in which microtubule plus-ends are embedded at kinetochores, forming dynamic "end-on" attachments. This remarkable configuration allows continuous addition or loss of tubulin subunits from the kinetochore-bound microtubule ends, concomitant with movement of the chromosomes. Here, we describe novel experimental assays for investigating this phenomenon using a well-defined in vitro reconstitution system visualized by fluorescence microscopy. Our assays take advantage of the kinetochore kinesin CENP-E, which assists in microtubule end conversion in vertebrate cells. In the experimental setup, CENP-E is conjugated to coverslip-immobilized microbeads coated with selected kinetochore components, creating conditions suitable for microtubule gliding and formation of either static or dynamic end-on microtubule attachment. This system makes it possible to analyze, in a systematic and rigorous manner, the molecular friction generated by the microtubule wall-binding proteins during lateral transport, as well as the ability of these proteins to establish and maintain association with microtubule plus-end, providing unique insights into the specific activities of various kinetochore components.


Assuntos
Bioensaio/métodos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Animais , Bovinos , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sus scrofa
8.
Curr Biol ; 27(23): 3666-3675.e6, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29153323

RESUMO

The macromolecular kinetochore functions to generate interactions between chromosomal DNA and spindle microtubules [1]. To facilitate chromosome movement and segregation, kinetochores must maintain associations with both growing and shrinking microtubule ends. It is critical to define the proteins and their properties that allow kinetochores to associate with dynamic microtubules. The kinetochore-localized human Ska1 complex binds to microtubules and tracks with depolymerizing microtubule ends [2]. We now demonstrate that the Ska1 complex also autonomously tracks with growing microtubule ends in vitro, a key property that would allow this complex to act at kinetochores to mediate persistent associations with dynamic microtubules. To define the basis for Ska1 complex interactions with dynamic microtubules, we investigated the tubulin-binding properties of the Ska1 microtubule binding domain. In addition to binding to the microtubule lattice and dolastatin-induced protofilament-like structures, we demonstrate that the Ska1 microtubule binding domain can associate with soluble tubulin heterodimers and promote assembly of oligomeric ring-like tubulin structures. We generated mutations on distinct surfaces of the Ska1 microtubule binding domain that disrupt binding to soluble tubulin but do not prevent microtubule binding. These mutants display compromised microtubule tracking activity in vitro and result in defective chromosome alignment and mitotic progression in cells using a CRISPR/Cas9-based replacement assay. Our work supports a model in which multiple surfaces of Ska1 interact with diverse tubulin substrates to associate with dynamic microtubule polymers and facilitate optimal chromosome segregation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Cromossômicas não Histona/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA