Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nature ; 605(7909): 310-314, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344985

RESUMO

Many age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-ß, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-ß amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.


Assuntos
Envelhecimento , Amiloide , Amiloidose , Encéfalo , Proteínas de Membrana , Proteínas do Tecido Nervoso , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Encéfalo/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Placa Amiloide/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo
2.
Nature ; 598(7880): 359-363, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34588692

RESUMO

The ordered assembly of tau protein into filaments characterizes several neurodegenerative diseases, which are called tauopathies. It was previously reported that, by cryo-electron microscopy, the structures of tau filaments from Alzheimer's disease1,2, Pick's disease3, chronic traumatic encephalopathy4 and corticobasal degeneration5 are distinct. Here we show that the structures of tau filaments from progressive supranuclear palsy (PSP) define a new three-layered fold. Moreover, the structures of tau filaments from globular glial tauopathy are similar to those from PSP. The tau filament fold of argyrophilic grain disease (AGD) differs, instead resembling the four-layered fold of corticobasal degeneration. The AGD fold is also observed in ageing-related tau astrogliopathy. Tau protofilament structures from inherited cases of mutations at positions +3 or +16 in intron 10 of MAPT (the microtubule-associated protein tau gene) are also identical to those from AGD, suggesting that relative overproduction of four-repeat tau can give rise to the AGD fold. Finally, the structures of tau filaments from cases of familial British dementia and familial Danish dementia are the same as those from cases of Alzheimer's disease and primary age-related tauopathy. These findings suggest a hierarchical classification of tauopathies on the basis of their filament folds, which complements clinical diagnosis and neuropathology and also allows the identification of new entities-as we show for a case diagnosed as PSP, but with filament structures that are intermediate between those of globular glial tauopathy and PSP.


Assuntos
Microscopia Crioeletrônica , Dobramento de Proteína , Tauopatias/classificação , Proteínas tau/química , Proteínas tau/ultraestrutura , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Demência/genética , Dinamarca , Feminino , Humanos , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/ultraestrutura , Paralisia Supranuclear Progressiva , Tauopatias/patologia , Reino Unido
3.
Nature ; 585(7825): 464-469, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461689

RESUMO

Synucleinopathies, which include multiple system atrophy (MSA), Parkinson's disease, Parkinson's disease with dementia and dementia with Lewy bodies (DLB), are human neurodegenerative diseases1. Existing treatments are at best symptomatic. These diseases are characterized by the presence of, and believed to be caused by the formation of, filamentous inclusions of α-synuclein in brain cells2,3. However, the structures of α-synuclein filaments from the human brain are unknown. Here, using cryo-electron microscopy, we show that α-synuclein inclusions from the brains of individuals with MSA are made of two types of filament, each of which consists of two different protofilaments. In each type of filament, non-proteinaceous molecules are present at the interface of the two protofilaments. Using two-dimensional class averaging, we show that α-synuclein filaments from the brains of individuals with MSA differ from those of individuals with DLB, which suggests that distinct conformers or strains characterize specific synucleinopathies. As is the case with tau assemblies4-9, the structures of α-synuclein filaments extracted from the brains of individuals with MSA differ from those formed in vitro using recombinant proteins, which has implications for understanding the mechanisms of aggregate propagation and neurodegeneration in the human brain. These findings have diagnostic and potential therapeutic relevance, especially because of the unmet clinical need to be able to image filamentous α-synuclein inclusions in the human brain.


Assuntos
Encéfalo/metabolismo , Microscopia Crioeletrônica , Corpos de Inclusão/química , Corpos de Inclusão/ultraestrutura , Atrofia de Múltiplos Sistemas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/ultraestrutura , Encéfalo/patologia , Encéfalo/ultraestrutura , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Modelos Moleculares , Atrofia de Múltiplos Sistemas/diagnóstico , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/terapia , Dobramento de Proteína , Putamen/metabolismo , Putamen/ultraestrutura , alfa-Sinucleína/metabolismo
4.
Nature ; 580(7802): 283-287, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32050258

RESUMO

Corticobasal degeneration (CBD) is a neurodegenerative tauopathy-a class of disorders in which the tau protein forms insoluble inclusions in the brain-that is characterized by motor and cognitive disturbances1-3. The H1 haplotype of MAPT (the tau gene) is present in cases of CBD at a higher frequency than in controls4,5, and genome-wide association studies have identified additional risk factors6. By histology, astrocytic plaques are diagnostic of CBD7,8; by SDS-PAGE, so too are detergent-insoluble, 37 kDa fragments of tau9. Like progressive supranuclear palsy, globular glial tauopathy and argyrophilic grain disease10, CBD is characterized by abundant filamentous tau inclusions that are made of isoforms with four microtubule-binding repeats11-15. This distinguishes such '4R' tauopathies from Pick's disease (the filaments of which are made of three-repeat (3R) tau isoforms) and from Alzheimer's disease and chronic traumatic encephalopathy (CTE) (in which both 3R and 4R isoforms are found in the filaments)16. Here we use cryo-electron microscopy to analyse the structures of tau filaments extracted from the brains of three individuals with CBD. These filaments were identical between cases, but distinct from those seen in Alzheimer's disease, Pick's disease and CTE17-19. The core of a CBD filament comprises residues lysine 274 to glutamate 380 of tau, spanning the last residue of the R1 repeat, the whole of the R2, R3 and R4 repeats, and 12 amino acids after R4. The core adopts a previously unseen four-layered fold, which encloses a large nonproteinaceous density. This density is surrounded by the side chains of lysine residues 290 and 294 from R2 and lysine 370 from the sequence after R4.


Assuntos
Doenças dos Gânglios da Base/patologia , Córtex Cerebral/patologia , Microscopia Crioeletrônica , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/química , Proteínas tau/ultraestrutura , Idoso , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Doenças dos Gânglios da Base/metabolismo , Química Encefálica , Córtex Cerebral/metabolismo , Encefalopatia Traumática Crônica/metabolismo , Encefalopatia Traumática Crônica/patologia , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Doença de Pick/metabolismo , Doença de Pick/patologia , Dobramento de Proteína , Proteínas tau/metabolismo
5.
FASEB J ; 37(12): e23311, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962096

RESUMO

Aggregation of α-synuclein (α-syn) into amyloid is the pathological hallmark of several neurodegenerative disorders, including Parkinson disease, dementia with Lewy bodies, and multiple system atrophy. It is widely accepted that α-syn aggregation is associated with neurodegeneration, although the mechanisms are not yet fully understood. Therefore, the inhibition of α-syn aggregation is a potential therapeutic approach against these diseases. This study used the photocatalyst for α-syn photo-oxygenation, which selectively adds oxygen atoms to fibrils. Our findings demonstrate that photo-oxygenation using this photocatalyst successfully inhibits α-syn aggregation, particularly by reducing its seeding ability. Notably, we also discovered that photo-oxygenation of the histidine at the 50th residue in α-syn aggregates is responsible for the inhibitory effect. These findings indicate that photo-oxygenation of the histidine residue in α-syn is a potential therapeutic strategy for synucleinopathies.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Histidina/análise , Doença de Parkinson/terapia , Doença de Parkinson/patologia , Corpos de Lewy/patologia , Fenômenos Fisiológicos Respiratórios
6.
Brain ; 146(12): 4988-4999, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37904205

RESUMO

Pathological tau accumulates in the brain in tauopathies such as Alzheimer's disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration, and forms amyloid-like filaments incorporating various post-translational modifications (PTMs). Cryo-electron microscopic (cryo-EM) studies have demonstrated that tau filaments extracted from tauopathy brains are characteristic of the disease and share a common fold(s) in the same disease group. Furthermore, the tau PTM profile changes during tau pathology formation and disease progression, and disease-specific PTMs are detected in and around the filament core. In addition, templated seeding has been suggested to trigger pathological tau amplification and spreading in vitro and in vivo, although the molecular mechanisms are not fully understood. Recently, we reported that the cryo-EM structures of tau protofilaments in SH-SY5Y cells seeded with patient-derived tau filaments show a core structure(s) resembling that of the original seeds. Here, we investigated PTMs of tau filaments accumulated in the seeded cells by liquid chromatography/tandem mass spectrometry and compared them with the PTMs of patient-derived tau filaments. Examination of insoluble tau extracted from SH-SY5Y cells showed that numerous phosphorylation, deamidation and oxidation sites detected in the fuzzy coat in the original seeds were well reproduced in SH-SY5Y cells. Moreover, templated tau filament formation preceded both truncation of the N-/C-terminals of tau and PTMs in and around the filament core, indicating these PTMs may predominantly be introduced after the degradation of the fuzzy coat.


Assuntos
Doença de Alzheimer , Neuroblastoma , Tauopatias , Humanos , Doença de Alzheimer/patologia , Encéfalo/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Processamento de Proteína Pós-Traducional , Proteínas tau/metabolismo , Tauopatias/patologia
7.
Acta Neuropathol ; 143(6): 613-640, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35513543

RESUMO

Intracellular accumulation of abnormal proteins with conformational changes is the defining neuropathological feature of neurodegenerative diseases. The pathogenic proteins that accumulate in patients' brains adopt an amyloid-like fibrous structure and exhibit various ultrastructural features. The biochemical analysis of pathogenic proteins in sarkosyl-insoluble fractions extracted from patients' brains also shows disease-specific features. Intriguingly, these ultrastructural and biochemical features are common within the same disease group. These differences among the pathogenic proteins extracted from patients' brains have important implications for definitive diagnosis of the disease, and also suggest the existence of pathogenic protein strains that contribute to the heterogeneity of pathogenesis in neurodegenerative diseases. Recent experimental evidence has shown that prion-like propagation of these pathogenic proteins from host cells to recipient cells underlies the onset and progression of neurodegenerative diseases. The reproduction of the pathological features that characterize each disease in cellular and animal models of prion-like propagation also implies that the structural differences in the pathogenic proteins are inherited in a prion-like manner. In this review, we summarize the ultrastructural and biochemical features of pathogenic proteins extracted from the brains of patients with neurodegenerative diseases that accumulate abnormal forms of tau, α-synuclein, and TDP-43, and we discuss how these disease-specific properties are maintained in the brain, based on recent experimental insights.


Assuntos
Doenças Neurodegenerativas , Príons , Animais , Encéfalo/patologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Doenças Neurodegenerativas/patologia , Príons/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
8.
Brain ; 144(8): 2333-2348, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-33693528

RESUMO

Tauopathies are a subset of neurodegenerative diseases characterized by abnormal tau inclusions. Specifically, three-repeat tau and four-repeat tau in Alzheimer's disease, three-repeat tau in Pick's disease (PiD) and four-repeat tau in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) form amyloid-like fibrous structures that accumulate in neurons and/or glial cells. Amplification and cell-to-cell transmission of abnormal tau based on the prion hypothesis are believed to explain the onset and progression of tauopathies. Recent studies support not only the self-propagation of abnormal tau, but also the presence of conformationally distinct tau aggregates, namely tau strains. Cryogenic electron microscopy analyses of patient-derived tau filaments have revealed disease-specific ordered tau structures. However, it remains unclear whether the ultrastructural and biochemical properties of tau strains are inherited during the amplification of abnormal tau in the brain. In this study, we investigated template-dependent amplification of tau aggregates using a cellular model of seeded aggregation. Tau strains extracted from human tauopathies caused strain-dependent accumulation of insoluble filamentous tau in SH-SY5Y cells. The seeding activity towards full-length four-repeat tau substrate was highest in CBD-tau seeds, followed by PSP-tau and Alzheimer's disease (AD)-tau seeds, while AD-tau seeds showed higher seeding activity than PiD-tau seeds towards three-repeat tau substrate. Abnormal tau amplified in cells inherited the ultrastructural and biochemical properties of the original seeds. These results strongly suggest that the structural differences of patient-derived tau strains underlie the diversity of tauopathies, and that seeded aggregation and filament formation mimicking the pathogenesis of sporadic tauopathy can be reproduced in cultured cells. Our results indicate that the disease-specific conformation of tau aggregates determines the tau isoform substrate that is recruited for templated amplification, and also influences the prion-like seeding activity.


Assuntos
Encéfalo/metabolismo , Agregação Patológica de Proteínas/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Humanos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas/patologia , Tauopatias/patologia
9.
Proc Natl Acad Sci U S A ; 114(45): E9645-E9654, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29042514

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by pathology of accumulated amyloid ß (Aß) and phosphorylated tau proteins in the brain. Postmortem degradation and cellular complexity within the brain have limited approaches to molecularly define the causal relationship between pathological features and neuronal dysfunction in AD. To overcome these limitations, we analyzed the neuron-specific DNA methylome of postmortem brain samples from AD patients, which allowed differentially hypomethylated region of the BRCA1 promoter to be identified. Expression of BRCA1 was significantly up-regulated in AD brains, consistent with its hypomethylation. BRCA1 protein levels were also elevated in response to DNA damage induced by Aß. BRCA1 became mislocalized to the cytoplasm and highly insoluble in a tau-dependent manner, resulting in DNA fragmentation in both in vitro cellular and in vivo mouse models. BRCA1 dysfunction under Aß burden is consistent with concomitant deterioration of genomic integrity and synaptic plasticity. The Brca1 promoter region of AD model mice brain was similarly hypomethylated, indicating an epigenetic mechanism underlying BRCA1 regulation in AD. Our results suggest deterioration of DNA integrity as a central contributing factor in AD pathogenesis. Moreover, these data demonstrate the technical feasibility of using neuron-specific DNA methylome analysis to facilitate discovery of etiological candidates in sporadic neurodegenerative diseases.


Assuntos
Doença de Alzheimer/genética , Proteína BRCA1/genética , Epigênese Genética/genética , Neurônios/metabolismo , Proteínas tau/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Dano ao DNA/genética , Metilação de DNA/genética , Modelos Animais de Doenças , Humanos , Plasticidade Neuronal/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Regulação para Cima/genética
10.
J Biol Chem ; 291(36): 18675-88, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27382062

RESUMO

Aggregates of abnormal proteins are widely observed in neuronal and glial cells of patients with various neurodegenerative diseases, and it has been proposed that prion-like behavior of these proteins can account for not only the onset but also the progression of these diseases. However, it is not yet clear which abnormal protein structures function most efficiently as seeds for prion-like propagation. In this study, we aimed to identify the most pathogenic species of α-synuclein (α-syn), the main component of the Lewy bodies and Lewy neurites that are observed in α-synucleinopathies. We prepared various forms of α-syn protein and examined their seeding properties in vitro in cells and in mouse experimental models. We also characterized these α-syn species by means of electron microscopy and thioflavin fluorescence assays and found that fragmented ß sheet-rich fibrous structures of α-syn with a length of 50 nm or less are the most efficient promoters of accumulation of phosphorylated α-syn, which is the hallmark of α-synucleinopathies. These results indicate that fragmented amyloid-like aggregates of short α-syn fibrils are the key pathogenic seeds that trigger prion-like conversion.


Assuntos
Amiloide , Corpos de Lewy , Neuritos , Doença de Parkinson , Príons , Agregação Patológica de Proteínas , alfa-Sinucleína , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Corpos de Lewy/química , Corpos de Lewy/genética , Corpos de Lewy/metabolismo , Camundongos , Neuritos/química , Neuritos/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosforilação , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
12.
Acta Neuropathol ; 131(2): 267-280, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26538150

RESUMO

Intracellular filamentous tau pathology is the defining feature of tauopathies, which form a subset of neurodegenerative diseases. We have analyzed pathological tau in Alzheimer's disease, and in frontotemporal lobar degeneration associated with tauopathy to include cases with Pick bodies, corticobasal degeneration, progressive supranuclear palsy, and ones due to intronic mutations in MAPT. We found that the C-terminal band pattern of the pathological tau species is distinct for each disease. Immunoblot analysis of trypsin-resistant tau indicated that the different band patterns of the 7-18 kDa fragments in these diseases likely reflect different conformations of tau molecular species. Protein sequence and mass spectrometric analyses revealed the carboxyl-terminal region (residues 243-406) of tau comprises the protease-resistant core units of the tau aggregates, and the sequence lengths and precise regions involved are different among the diseases. These unique assembled tau cores may be used to classify and diagnose disease strains. Based on these results, we propose a new clinicopathological classification of tauopathies based on the biochemical properties of tau.


Assuntos
Química Encefálica , Immunoblotting/métodos , Espectrometria de Massas/métodos , Análise de Sequência de Proteína/métodos , Tauopatias/classificação , Tauopatias/metabolismo , Proteínas tau/química , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Encéfalo/ultraestrutura , Feminino , Humanos , Masculino , Microscopia Imunoeletrônica/métodos , Pessoa de Meia-Idade , Conformação Proteica , Sarcosina/análogos & derivados , Sarcosina/metabolismo , Tauopatias/patologia , Tripsina/metabolismo , Proteínas tau/metabolismo
13.
J Mov Disord ; 17(1): 15-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37990381

RESUMO

Intracellular α-synuclein (α-syn) inclusions are a neuropathological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA), both of which are termed synucleinopathies. LBD is defined by Lewy bodies and Lewy neurites in neurons, while MSA displays glial cytoplasmic inclusions in oligodendrocytes. Pathological α-syn adopts an ordered filamentous structure with a 5-10 nm filament diameter, and this conformational change has been suggested to be involved in the disease onset and progression. Synucleinopathies also exhibit characteristic ultrastructural and biochemical properties of α-syn filaments, and α-syn strains with distinct conformations have been identified. Numerous experimental studies have supported the idea that pathological α-syn self-amplifies and spreads throughout the brain, during which processes the conformation of α-syn filaments may drive the disease specificity. In this review, we summarize the ultrastructural features and heterogeneity of α-syn filaments in the brains of patients with synucleinopathy and in experimental models of seeded α-syn aggregation.

14.
FEBS Open Bio ; 13(8): 1394-1404, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337995

RESUMO

The formation of amyloid filaments through templated seeding is believed to underlie the propagation of pathology in most human neurodegenerative diseases. A widely used model system to study this process is to seed amyloid filament formation in cultured cells using human brain extracts. Here, we report the electron cryo-microscopy structures of tau filaments from  undifferentiated seeded SH-SY5Y cells that transiently expressed N-terminally HA-tagged 1N3R or 1N4R human tau, using brain extracts from individuals with Alzheimer's disease or corticobasal degeneration. Although the resulting filament structures differed from those of the brain seeds, some degrees of structural templating were observed. Studying templated seeding in cultured cells, and determining the structures of the resulting filaments, can thus provide insights into the cellular aspects underlying neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Degeneração Corticobasal , Neuroblastoma , Humanos , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Microscopia Crioeletrônica , Neuroblastoma/patologia , Encéfalo/metabolismo , Amiloide
15.
Brain Nerve ; 74(7): 919-925, 2022 Jul.
Artigo em Japonês | MEDLINE | ID: mdl-35860941

RESUMO

Pathological tau protein accumulated in the brain of patients with tauopathies undergoes structural changes into amyloid-like filaments and forms the intracellular deposits that characterize the disease. Structural and biochemical classification of pathogenic tau extracted from patients' brains supports the hypothesis that structural polymorphisms of tau filaments occur in the brain. Additionally, disease-specific tau pathologies are recapitulated in in vitro and in vivo experimental models that mimic tau aggregation and dissemination and indicate that conformation of tau filaments is a key contributor to the pathological diversity in tauopathy. In this review, we describe the structural and biochemical features of pathological tau extracted from the brain of patients with tauopathies and discuss the possible mechanisms underlying amplification and dissemination of pathological tau in the brain.


Assuntos
Tauopatias , Proteínas tau , Encéfalo/patologia , Humanos , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo
16.
Methods Mol Biol ; 2322: 17-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043188

RESUMO

α-Synuclein (α-syn) is a major component of abnormal protein deposits observed in the brains of patients with synucleinopathies, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy (MSA). The synaptic protein α-syn is water-soluble under normal physiological conditions, but in these patients' brains, we see accumulation of insoluble amyloid-like α-syn fibrils with prion-like properties. Intracerebral accumulation of these fibrils is correlated with disease onset and progression. Recombinant α-syn protein also forms amyloid-like fibrils that are structurally akin to those extracted from patients' brains. Recent cryo-electron microscopic studies have identified the core structures of synthetic α-syn fibrils and α-syn fibrils extracted from the brains of patients with MSA at the atomic level. In this chapter, we describe negative staining and immunoelectron microscopy protocols for ultrastructural characterization of synthetic α-syn fibrils and pathological α-syn fibrils.


Assuntos
Amiloide/metabolismo , Microscopia Eletrônica/métodos , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Progressão da Doença , Humanos , Microscopia Imunoeletrônica/métodos , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , Proteínas Recombinantes/metabolismo
17.
FEBS Open Bio ; 11(4): 999-1013, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33548114

RESUMO

The propagation of conformational strains by templated seeding is central to the prion concept. Seeded assembly of α-synuclein into filaments is believed to underlie the prion-like spreading of protein inclusions in a number of human neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). We previously determined the atomic structures of α-synuclein filaments from the putamen of five individuals with MSA. Here, we used filament preparations from three of these brains for the in vitro seeded assembly of recombinant human α-synuclein. We find that the structures of the seeded assemblies differ from those of the seeds, suggesting that additional, as yet unknown, factors play a role in the propagation of the seeds. Identification of these factors will be essential for understanding the prion-like spreading of α-synuclein proteinopathies.


Assuntos
Amiloide/química , Estrutura Molecular , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Conformação Proteica , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Amiloide/ultraestrutura , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Atrofia de Múltiplos Sistemas/etiologia , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica
18.
Prog Mol Biol Transl Sci ; 168: 323-348, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31699325

RESUMO

Prions are defined as proteinaceous infectious particles that do not contain nucleic acids. Neuropathological investigations of post-mortem brains and recent studies of experimental transmission have suggested that amyloid-like abnormal protein aggregates, which are the defining feature of many neurodegenerative diseases, behave like prions and propagate throughout the brain. This prion-like propagation may be the underlying mechanism of onset and progression of neurodegenerative diseases, although the precise molecular mechanisms involved remain unclear. However, in vitro and in vivo experimental models of prion-like propagation using pathogenic protein seeds are well established and are extremely valuable for the exploration and evaluation of novel drugs and therapies for neurodegenerative diseases for which there is no effective treatment. In this chapter, we introduce the experimental models of prion-like propagation of α-synuclein, which is accumulated in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, and we describe their applications for the development of new diagnostic and therapeutic modalities. We also introduce the concept of "α-syn strains," which may underlie the pathological and clinical diversity of α-synucleinopathies.


Assuntos
Doenças Neurodegenerativas/etiologia , Príons , Sinucleinopatias/fisiopatologia , alfa-Sinucleína/metabolismo , Animais , Progressão da Doença , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
19.
Acta Neuropathol Commun ; 6(1): 29, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29669601

RESUMO

The concept that abnormal protein aggregates show prion-like propagation between cells has been considered to explain the onset and progression of many neurodegenerative diseases. Indeed, both synthetic amyloid-like fibrils and pathogenic proteins extracted from patients' brains induce self-templated amplification and cell-to-cell transmission in vitro and in vivo. However, it is unclear whether exposure to exogenous prion-like proteins can potentially cause these diseases in humans. Here, we investigated in detail the prion-like seeding activities of several kinds of pathogenic α-synuclein (α-syn), including synthetic fibrils and detergent-insoluble fractions extracted from brains of patients with α-synucleinopathies. Exposure to synthetic α-syn fibrils at concentrations above 100 pg/mL caused seeded aggregation of α-syn in SH-SY5Y cells, and seeded aggregation was also observed in C57BL/6 J mice after intracerebral inoculation of at least 0.1 µg/animal. α-Syn aggregates extracted from brains of multiple system atrophy (MSA) patients showed higher seeding activity than those extracted from patients with dementia with Lewy bodies (DLB), and their potency was similar to that of synthetic α-syn fibrils. We also examined the effects of various methods that have been reported to inactivate abnormal prion proteins (PrPSc), including autoclaving at various temperatures, exposure to sodium dodecyl sulfate (SDS), and combined treatments. The combination of autoclaving and 1% SDS substantially reduced the seeding activities of synthetic α-syn fibrils and α-syn aggregates extracted from MSA brains. However, single treatment with 1% SDS or generally used sterilization conditions proved insufficient to prevent accumulation of pathological α-syn. In conclusion, α-syn aggregates derived from MSA patients showed a potent prion-like seeding activity, which could be efficiently reduced by combined use of SDS and autoclaving.


Assuntos
Encéfalo/metabolismo , Doenças Priônicas/patologia , Doenças Priônicas/fisiopatologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade , Amiloide , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/ultraestrutura , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Doença por Corpos de Lewy/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Imunoeletrônica , Atrofia de Múltiplos Sistemas/patologia , Neuroblastoma/patologia , Fragmentos de Peptídeos/farmacologia , Doenças Priônicas/metabolismo , Transfecção , alfa-Sinucleína/genética , alfa-Sinucleína/ultraestrutura
20.
Front Mol Neurosci ; 11: 273, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233307

RESUMO

N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: α-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer's disease model. Interestingly, a very marked increase in NMDAR-NCS1 complexes was identified in neurons and a marked increase of both NMDAR-NCS1 and NMDAR-CaM complexes was identified in microglia from the transgenic mice. The results show that α-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor-calcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA