Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
EMBO J ; 37(21)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30209240

RESUMO

Stress-induced cortical alertness is maintained by a heightened excitability of noradrenergic neurons innervating, notably, the prefrontal cortex. However, neither the signaling axis linking hypothalamic activation to delayed and lasting noradrenergic excitability nor the molecular cascade gating noradrenaline synthesis is defined. Here, we show that hypothalamic corticotropin-releasing hormone-releasing neurons innervate ependymal cells of the 3rd ventricle to induce ciliary neurotrophic factor (CNTF) release for transport through the brain's aqueductal system. CNTF binding to its cognate receptors on norepinephrinergic neurons in the locus coeruleus then initiates sequential phosphorylation of extracellular signal-regulated kinase 1 and tyrosine hydroxylase with the Ca2+-sensor secretagogin ensuring activity dependence in both rodent and human brains. Both CNTF and secretagogin ablation occlude stress-induced cortical norepinephrine synthesis, ensuing neuronal excitation and behavioral stereotypes. Cumulatively, we identify a multimodal pathway that is rate-limited by CNTF volume transmission and poised to directly convert hypothalamic activation into long-lasting cortical excitability following acute stress.


Assuntos
Neurônios Adrenérgicos/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Hipotálamo/metabolismo , Locus Cerúleo/metabolismo , Estresse Fisiológico , Neurônios Adrenérgicos/patologia , Animais , Fator Neurotrófico Ciliar/genética , Hipotálamo/patologia , Locus Cerúleo/patologia , Camundongos , Camundongos Knockout , Ratos
2.
J Neurosci ; 38(31): 6983-7003, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29954847

RESUMO

In cortical structures, principal cell activity is tightly regulated by different GABAergic interneurons (INs). Among these INs are vasoactive intestinal polypeptide-expressing (VIP+) INs, which innervate preferentially other INs, providing a structural basis for temporal disinhibition of principal cells. However, relatively little is known about VIP+ INs in the amygdaloid basolateral complex (BLA). In this study, we report that VIP+ INs have a variable density in the distinct subdivisions of the mouse BLA. Based on different anatomical, neurochemical, and electrophysiological criteria, VIP+ INs could be identified as IN-selective INs (IS-INs) and basket cells expressing CB1 cannabinoid receptors. Whole-cell recordings of VIP+ IS-INs revealed three different spiking patterns, none of which was associated with the expression of calretinin. Genetic targeting combined with optogenetics and in vitro recordings enabled us to identify several types of BLA INs innervated by VIP+ INs, including other IS-INs, basket and neurogliaform cells. Moreover, light stimulation of VIP+ basket cell axon terminals, characterized by CB1 sensitivity, evoked IPSPs in ∼20% of principal neurons. Finally, we show that VIP+ INs receive a dense innervation from both GABAergic inputs (although only 10% from other VIP+ INs) and distinct glutamatergic inputs, identified by their expression of different vesicular glutamate transporters.In conclusion, our study provides a wide-range analysis of single-cell properties of VIP+ INs in the mouse BLA and of their intrinsic and extrinsic connectivity. Our results reinforce the evidence that VIP+ INs are structurally and functionally heterogeneous and that this heterogeneity could mediate different roles in amygdala-dependent functions.SIGNIFICANCE STATEMENT We provide the first comprehensive analysis of the distribution of vasoactive intestinal polypeptide-expressing (VIP+) interneurons (INs) across the entire mouse amygdaloid basolateral complex (BLA), as well as of their morphological and physiological properties. VIP+ INs in the neocortex preferentially target other INs to form a disinhibitory network that facilitates principal cell firing. Our study is the first to demonstrate the presence of such a disinhibitory circuitry in the BLA. We observed structural and functional heterogeneity of these INs and characterized their input/output connectivity. We also identified several types of BLA INs that, when inhibited, may provide a temporal window for principal cell firing and facilitate associative plasticity, e.g., in fear learning.


Assuntos
Complexo Nuclear Basolateral da Amígdala/citologia , Interneurônios/fisiologia , Peptídeo Intestinal Vasoativo/análise , Potenciais de Ação , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Contagem de Células , Conectoma , Cruzamentos Genéticos , Genes Reporter , Ácido Glutâmico/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos da radiação , Interneurônios/química , Interneurônios/classificação , Interneurônios/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/ultraestrutura , Receptor CB1 de Canabinoide/análise , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
J Neurosci ; 37(34): 8166-8179, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28733354

RESUMO

Temporal lobe epilepsy (TLE) is the most frequent form of focal epilepsies and is generally associated with malfunctioning of the hippocampal formation. Recently, a preferential loss of parvalbumin (PV) neurons has been observed in the subiculum of TLE patients and in animal models of TLE. To demonstrate a possible causative role of defunct PV neurons in the generation of TLE, we permanently inhibited GABA release selectively from PV neurons of the ventral subiculum by injecting a viral vector expressing tetanus toxin light chain in male mice. Subsequently, mice were subjected to telemetric EEG recording and video monitoring. Eighty-eight percent of the mice presented clusters of spike-wave discharges (C-SWDs; 40.0 ± 9.07/month), and 64% showed spontaneous recurrent seizures (SRSs; 5.3 ± 0.83/month). Mice injected with a control vector presented with neither C-SWDs nor SRSs. No neurodegeneration was observed due to vector injection or SRS. Interestingly, mice that presented with only C-SWDs but no SRSs, developed SRSs upon injection of a subconvulsive dose of pentylenetetrazole after 6 weeks. The initial frequency of SRSs declined by ∼30% after 5 weeks. In contrast to permanent silencing of PV neurons, transient inhibition of GABA release from PV neurons through the designer receptor hM4Di selectively expressed in PV-containing neurons transiently reduced the seizure threshold of the mice but induced neither acute nor recurrent seizures. Our data demonstrate a critical role for perisomatic inhibition mediated by PV-containing interneurons, suggesting that their sustained silencing could be causally involved in the development of TLE.SIGNIFICANCE STATEMENT Development of temporal lobe epilepsy (TLE) generally takes years after an initial insult during which maladaptation of hippocampal circuitries takes place. In human TLE and in animal models of TLE, parvalbumin neurons are selectively lost in the subiculum, the major output area of the hippocampus. The present experiments demonstrate that specific and sustained inhibition of GABA release from parvalbumin-expressing interneurons (mostly basket cells) in sector CA1/subiculum is sufficient to induce hyperexcitability and spontaneous recurrent seizures in mice. As in patients with nonlesional TLE, these mice developed epilepsy without signs of neurodegeneration. The experiments highlight the importance of the potent inhibitory action mediated by parvalbumin cells in the hippocampus and identify a potential mechanism in the development of TLE.


Assuntos
Hipocampo/fisiopatologia , Interneurônios/fisiologia , Parvalbuminas/antagonistas & inibidores , Parvalbuminas/fisiologia , Convulsões/fisiopatologia , Animais , Eletroencefalografia/métodos , Hipocampo/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente
4.
Neurobiol Learn Mem ; 149: 144-153, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29408468

RESUMO

The anterior bed nucleus of stria terminalis (BNST) is involved in reinstatement of extinguished fear, and neuropeptide Y2 receptors influence local synaptic signaling. Therefore, we hypothesized that Y2 receptors in anteroventral BNST (BNSTav) interfere with remote fear memory and that previous fear extinction is an important variable. C57BL/6NCrl mice were fear-conditioned, and a Y2 receptor-specific agonist (NPY3-36) or antagonist (JNJ-5207787) was applied in BNSTav before fear retrieval at the following day. Remote fear memory was tested on day 16 in two groups of mice, which had (experiment 1) or had not (experiment 2) undergone extinction training after conditioning. In the group with extinction training, tests of remote fear memory revealed partial retrieval of extinction, which was prevented after blockade of Y2 receptors in BNSTav. No such effect was observed in the group with no extinction training, but stimulation of Y2 receptors in BNSTav mimicked the influence of extinction during tests of remote fear memory. Pharmacological manipulation of Y2 receptors in BNSTav before fear acquisition (experiment 3) had no effect on fear memory retrieval, extinction or remote fear memory. Furthermore, partial retrieval of extinction during tests of remote fear memory was associated with changes in number of c-Fos expressing neurons in BNSTav, which was prevented or mimicked upon Y2 blockade or stimulation in BNSTav. These results indicate that Y2 receptor manipulation in BNSTav interferes with fear memory and extinction retrieval at remote stages, likely through controlling neuronal activity in BNSTav during extinction training.


Assuntos
Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Núcleos Septais/efeitos dos fármacos , Acrilamidas/farmacologia , Animais , Extinção Psicológica/fisiologia , Medo/fisiologia , Memória de Longo Prazo/fisiologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Piperidinas/farmacologia
5.
Exp Eye Res ; 177: 87-95, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30076797

RESUMO

PURPOSE: to explore whether the NK1 and Y2 receptors are involved in the pathogenesis of laser-induced CNV (choroidal neovascularization) in C57Bl/6N mice. METHODS: CNV was induced by laser damage of Bruch's membrane and the CNV volume was determined by OCT and/or flatmount preparation. First, the development of the CNV volume over time was evaluated. Second, the CNV development in NK1- and Y2 KO mice was analyzed. Third, the effect on the development as well as the regression of CNV by intravitreal injections of the NK1 antagonist SR140333 and the Y2 antagonist BIIEO246 separately and each in combination with Eylea®, was investigated. Furthermore, flatmount CNV volume measurements were correlated to volumes obtained by the in vivo OCT technique. RESULTS: CNV volume peak was observed at day 4 after laser treatment. Compared to wild type mice, NK1 and Y2 KO mice showed significantly smaller CNV volumes. Eylea® and the Y2 antagonist significantly reduced the volume of the developing CNV. In contrast to Eylea® there was no effect of either antagonist on the regression of CNV, additionally no additive effect upon combined Eylea®/antagonist treatment was observed. There was a strong positive correlation between CNV volumes obtained by OCT and flatmount. CONCLUSION: NK1 and Y2 receptors mediate the development of laser-induced CNVs in mice. They seem to play an important role at the developmental stage of CNVs, whereas VEGF via VEGF receptor may be an important mediator throughout the CNV existence. In vivo OCT correlates with flatmount CNV volume, representing a useful tool for in vivo evaluations of CNV over time.


Assuntos
Neovascularização de Coroide , Receptores da Neurocinina-1/fisiologia , Receptores de Neuropeptídeo Y/fisiologia , Inibidores da Angiogênese/farmacologia , Animais , Células Cultivadas , Corioide/patologia , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/patologia , Neovascularização de Coroide/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Angiofluoresceinografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Receptores da Neurocinina-1/deficiência , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/deficiência , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/farmacologia
6.
J Neurochem ; 136(4): 717-730, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26603269

RESUMO

Epigenetic mechanisms like altered histone acetylation may have a crucial role in epileptogenesis. In two mouse models of temporal lobe epilepsy, we investigated changes in the expression of class II histone deacetylases (HDAC), a group of signal transducers that shuttle between nucleus and cytoplasm. Intrahippocampal injection of kainic acid (KA) induced a status epilepticus, development of spontaneous seizures (after 3 days), and finally chronic epilepsy and granule cell dispersion. Expression of class II HDAC mRNAs was investigated at different time intervals after KA injection in the granule cell layers and in sectors CA1 and CA3 contralateral to the site of KA injection lacking neurodegeneration. Increased expression of HDAC5 and 9 mRNAs coincided with pronounced granule cell dispersion in the KA-injected hippocampus at late intervals (14-28 days after KA) and equally affected both HDAC9 splice variants. In contrast, in the pilocarpine model (showing no granule cell dispersion), we observed decreases in the expression of HDAC5 and 9 at the same time intervals. Beyond this, striking similarities between both temporal lobe epilepsy models such as fast decreases in HDAC7 and 10 mRNAs during the acute status epilepticus were observed, notably also in the contralateral hippocampus not affected by neurodegeneration. The particular patterns of HDAC mRNA expression suggest a role in epileptogenesis and granule cell dispersion. Reduced expression of HDACs may result in increased expression of pro- and anticonvulsive proteins. On the other hand, export of HDACs from the nucleus into the cytoplasm could allow for deacetylation of cytoplasmatic proteins involved in axonal and dendritic remodeling, like granule cell dispersion. HDAC 5 and HDAC 9 expression is highly increased in granule cells of the KA-injected hippocampus and parallels granule cell dispersion. Both HDACs are thought to be targeted to the cytoplasm and to act there by deacetylating cytoplasmatic (e.g. cytosceleton-related) proteins.

7.
Cell Metab ; 35(6): 979-995.e7, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37201523

RESUMO

Neuropeptide Y (NPY) in the arcuate nucleus (ARC) is known as one of the most critical regulators of feeding. However, how NPY promotes feeding under obese conditions is unclear. Here, we show that positive energy balance, induced by high-fat diet (HFD) or in genetically obese leptin-receptor-deficient mice, leads to elevated Npy2r expression especially on proopiomelanocortin (POMC) neurons, which also alters leptin responsiveness. Circuit mapping identified a subset of ARC agouti-related peptide (Agrp)-negative NPY neurons that control these Npy2r expressing POMC neurons. Chemogenetic activation of this newly discovered circuitry strongly drives feeding, while optogenetic inhibition reduces feeding. Consistent with that, lack of Npy2r on POMC neurons leads to reduced food intake and fat mass. This suggests that under energy surplus conditions, when ARC NPY levels generally drop, high-affinity NPY2R on POMC neurons is still able to drive food intake and enhance obesity development via NPY released predominantly from Agrp-negative NPY neurons.


Assuntos
Leptina , Pró-Opiomelanocortina , Camundongos , Animais , Leptina/metabolismo , Pró-Opiomelanocortina/metabolismo , Neuropeptídeo Y/metabolismo , Proteína Relacionada com Agouti/metabolismo , Neurônios/metabolismo , Núcleo Arqueado do Hipotálamo , Obesidade/metabolismo
8.
Mol Metab ; 76: 101790, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562743

RESUMO

OBJECTIVE: One of leptin's main targets in the hypothalamus are neuropeptide Y (NPY) neurons, with selective deletion of leptin receptors (Lepr) specifically in Npy neurons resulting in major alterations of energy partitioning between fat and bone mass. However, the specific action of these Npy+/Lepr+ neurons compared to Npy-negative Lepr (Npy-/Lepr+) neurons in regard to energy homeostasis regulation is unknown. METHODS: Specific AAV viral vectors were generated using DREADD and INTRSECT technology and used in male LeprCre/+ and LeprCre/+;NpyFlp/+ mice to assess the effect of activating either all Lepr neurons or specifically Npy+/Lepr+ or Npy-/Lepr+ neurons only on feeding, energy homeostasis control, and body composition. RESULTS: Selective stimulation of Npy+/Lepr+ neurons led to an immediate decrease in respiratory quotient followed by a delayed increase in food intake in standard chow fed, but interestingly not in high fat diet (HFD) fed mice. In addition, stimulation of Npy+/Lepr+ neurons led to a robust increase in brown adipose tissue thermogenesis and improved glucose tolerance. These effects were not observed in standard chow fed mice when Npy-/Lepr+ expressing neurons were specifically activated, suggesting the effects of leptin on these parameters are driven by NPY. However, under HFD condition when leptin levels are elevated, the stimulation of the Npy-/Lepr+ neurons increased food intake, physical activity and energy expenditure. Interestingly, chronic stimulation of Npy-positive Lepr neurons was able to increase bone mass independently of bodyweight, whilst chronic stimulation of the Npy-/Lepr+ neurons resulted in increased bodyweight and fat mass with proportionate increases in bone mass. CONCLUSIONS: Together, these data indicate that leptin signalling through Npy-positive Lepr-expressing neurons controls energy partitioning via stimulation of thermogenesis, energy expenditure, and the use of fat as a fuel source. However, under prolonged HFD, leptin resistance may occur and actions of leptin signalling through Npy-negative Lepr hypothalamic neurons may exacerbate excess food intake.


Assuntos
Leptina , Neuropeptídeo Y , Camundongos , Masculino , Animais , Leptina/metabolismo , Neuropeptídeo Y/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Neurônios/metabolismo , Metabolismo Energético
9.
Neuron ; 111(16): 2583-2600.e6, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37295418

RESUMO

Chronic stress fuels the consumption of palatable food and can enhance obesity development. While stress- and feeding-controlling pathways have been identified, how stress-induced feeding is orchestrated remains unknown. Here, we identify lateral habenula (LHb) Npy1r-expressing neurons as the critical node for promoting hedonic feeding under stress, since lack of Npy1r in these neurons alleviates the obesifying effects caused by combined stress and high fat feeding (HFDS) in mice. Mechanistically, this is due to a circuit originating from central amygdala NPY neurons, with the upregulation of NPY induced by HFDS initiating a dual inhibitory effect via Npy1r signaling onto LHb and lateral hypothalamus neurons, thereby reducing the homeostatic satiety effect through action on the downstream ventral tegmental area. Together, these results identify LHb-Npy1r neurons as a critical node to adapt the response to chronic stress by driving palatable food intake in an attempt to overcome the negative valence of stress.


Assuntos
Habenula , Camundongos , Animais , Vias Neurais/fisiologia , Habenula/fisiologia , Região Hipotalâmica Lateral , Área Tegmentar Ventral , Neurônios/fisiologia
10.
Exp Neurol ; 370: 114580, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37884187

RESUMO

The subiculum, a key output region of the hippocampus, is increasingly recognized as playing a crucial role in seizure initiation and spread. The subiculum consists of glutamatergic pyramidal cells, which show alterations in intrinsic excitability in the course of epilepsy, and multiple types of GABAergic interneurons, which exhibit varying characteristics in epilepsy. In this study, we aimed to assess the role of the vasoactive intestinal peptide interneurons (VIP-INs) of the ventral subiculum in the pathophysiology of temporal lobe epilepsy. We observed that an anatomically restricted inhibition of VIP-INs of the ventral subiculum was sufficient to reduce seizures in the intrahippocampal kainic acid model of epilepsy, changing the circadian rhythm of seizures, emphasizing the critical role of this small cell population in modulating TLE. As we expected, permanent unilateral or bilateral silencing of VIP-INs of the ventral subiculum in non-epileptic animals did not induce seizures or epileptiform activity. Interestingly, transient activation of VIP-INs of the ventral subiculum was enough to increase the frequency of seizures in the acute seizure model. Our results offer new perspectives on the crucial involvement of VIP-INs of the ventral subiculum in the pathophysiology of TLE. Given the observed predominant disinhibitory role of the VIP-INs input in subicular microcircuits, modifications of this input could be considered in the development of therapeutic strategies to improve seizure control.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Ácido Caínico/toxicidade , Peptídeo Intestinal Vasoativo , Convulsões/induzido quimicamente , Interneurônios/fisiologia , Hipocampo
11.
Hippocampus ; 22(3): 590-603, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21509853

RESUMO

Recently, expression of glutamate decarboxylase-67 (GAD67), a key enzyme of GABA synthesis, was detected in the otherwise glutamatergic mossy fibers of the rat hippocampus. Synthesis of the enzyme was markedly enhanced after experimentally induced status epilepticus. Here, we investigated the expression of GAD67 protein and mRNA in 44 hippocampal specimens from patients with mesial temporal lobe epilepsy (TLE) using double immunofluorescence histochemistry, immunoblotting, and in situ hybridization. Both in specimens with (n = 37) and without (n = 7) hippocampal sclerosis, GAD67 was highly coexpressed with dynorphin in terminal areas of mossy fibers, including the dentate hilus and the stratum lucidum of sector CA3. In the cases with Ammon's horn sclerosis, also the inner molecular layer of the dentate gyrus contained strong staining for GAD67 immunoreactivity, indicating labeling of mossy fiber terminals that specifically sprout into this area. Double immunofluorescence revealed the colocalization of GAD67 immunoreactivity with the mossy fiber marker dynorphin. The extent of colabeling correlated with the number of seizures experienced by the patients. Furthermore, GAD67 mRNA was found in granule cells of the dentate gyrus. Levels, both of GAD67 mRNA and of GAD67 immunoreactivity were similar in sclerotic and nonsclerotic specimens and appeared to be increased compared to post mortem controls. Provided that the strong expression of GAD67 results in synthesis of GABA in hippocampal mossy fibers this may represent a self-protecting mechanism in TLE. In addition GAD67 expression also may result in conversion of excessive intracellular glutamate to nontoxic GABA within mossy fiber terminals.


Assuntos
Epilepsia do Lobo Temporal/enzimologia , Glutamato Descarboxilase/metabolismo , Hipocampo/enzimologia , Fibras Musgosas Hipocampais/enzimologia , Adolescente , Adulto , Idoso , Animais , Criança , Giro Denteado/enzimologia , Dinorfinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/enzimologia , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
12.
Mol Metab ; 59: 101455, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35167990

RESUMO

OBJECTIVE: Aguti-related protein (AGRP) neurons in the arcuate nucleus of the hypothalamus (ARC), which co-express neuropeptide Y (NPY), are key regulators of feeding and energy homeostasis. However, the precise role NPY has within these neurons and the specific pathways that it control are still unclear. In this article, we aimed to determine what aspects of feeding behaviour and energy homeostasis are controlled by NPY originating from AGRP neurons and which Y-receptor pathways are utilised to fulfil this function. METHODS: Novel conditional Agrpcre/+;Npylox/lox knockout mice were generated and comprehensively phenotyped, both under standard chow as well as high-fat-diet conditions. Designer receptor exclusively activated by designer drugs (DREADD) technology was used to assess the altered responses on feeding and energy homeostasis control in the absence of NPY in these neurons. Rescue experiments utilising Npy1r- and Npy2r-selective NPY ligands were performed to assess which component of the energy homeostasis control is dependent by which specific Y-receptor pathway. RESULTS: We show that the specific deletion of Npy only in AGRP neurons leads to a paradoxical mild obese phenotype associated with reduced locomotion and energy expenditure and increased feeding and Respiratory Quotient (RQ) that remain elevated under a positive energy balance. The activation of Npy-deficient AGRP neurons via DREADD's is still able to drive feeding, yet with a delayed onset. Additionally, Clozapine-N-oxide (CNO) treatment reduces locomotion without impacting on energy expenditure. Rescue experiments re-introducing Npy1r- and Npy2r-selective NPY ligands revealed that the increased feeding and RQ are mostly driven by Npy1r, whereas energy expenditure and locomotion are controlled by Npy2r signalling. CONCLUSION: Together, these results demonstrate that NPY originating from AGRP neurons is not only critical to initiate but also for continuously driving feeding, and we for the first time identify which Y-receptor controls which pathway.


Assuntos
Metabolismo Energético , Neuropeptídeo Y , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Ligantes , Camundongos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo
13.
Nat Commun ; 13(1): 5944, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209152

RESUMO

The lateral septum (LS) has been implicated in the regulation of locomotion. Nevertheless, the neurons synchronizing LS activity with the brain's clock in the suprachiasmatic nucleus (SCN) remain unknown. By interrogating the molecular, anatomical and physiological heterogeneity of dopamine neurons of the periventricular nucleus (PeVN; A14 catecholaminergic group), we find that Th+/Dat1+ cells from its anterior subdivision innervate the LS in mice. These dopamine neurons receive dense neuropeptidergic innervation from the SCN. Reciprocal viral tracing in combination with optogenetic stimulation ex vivo identified somatostatin-containing neurons in the LS as preferred synaptic targets of extrahypothalamic A14 efferents. In vivo chemogenetic manipulation of anterior A14 neurons impacted locomotion. Moreover, chemogenetic inhibition of dopamine output from the anterior PeVN normalized amphetamine-induced hyperlocomotion, particularly during sedentary periods. Cumulatively, our findings identify a hypothalamic locus for the diurnal control of locomotion and pinpoint a midbrain-independent cellular target of psychostimulants.


Assuntos
Dopamina , Hipotálamo , Animais , Dopamina/fisiologia , Camundongos , Neurônios/fisiologia , Somatostatina , Núcleo Supraquiasmático/fisiologia
14.
J Neurosci ; 30(18): 6282-90, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20445054

RESUMO

Anxiety is integrated in the amygdaloid nuclei and involves the interplay of the amygdala and various other areas of the brain. Neuropeptides play a critical role in regulating this process. Neuropeptide Y (NPY), a 36 aa peptide, is highly expressed in the amygdala. It exerts potent anxiolytic effects through cognate postsynaptic Y1 receptors, but augments anxiety through presynaptic Y2 receptors. To identify the precise anatomical site(s) of Y2-mediated anxiogenic action, we investigated the effect of site-specific deletion of the Y2 gene in amygdaloid nuclei on anxiety and depression-related behaviors in mice. Ablating the Y2 gene in the basolateral and central amygdala resulted in an anxiolytic phenotype, whereas deletion in the medial amygdala or in the bed nucleus of the stria terminalis had no obvious effect on emotion-related behavior. Deleting the Y2 receptor gene in the central amygdala, but not in any other amygdaloid nucleus, resulted in an added antidepressant-like effect. It was associated with a reduction of presumably presynaptic Y2 receptors in the stria terminalis/bed nucleus of the stria terminalis, the nucleus accumbens, and the locus ceruleus. Our results are evidence of the highly site-specific nature of the Y2-mediated function of NPY in the modulation of anxiety- and depression-related behavior. The activity of NPY is likely mediated by the presynaptic inhibition of GABA and/or NPY release from interneurons and/or efferent projection neurons of the basolateral and central amygdala.


Assuntos
Tonsila do Cerebelo/fisiologia , Ansiedade/genética , Depressão/genética , Neuropeptídeo Y/fisiologia , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Depressão/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Locus Cerúleo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neuropeptídeo Y/metabolismo , Núcleos Septais/metabolismo , Núcleos Septais/fisiologia
15.
Front Synaptic Neurosci ; 13: 635726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122036

RESUMO

Disproportionate, maladapted, and generalized fear are essential hallmarks of posttraumatic stress disorder (PTSD), which develops upon severe trauma in a subset of exposed individuals. Among the brain areas that are processing fear memories, the hippocampal formation exerts a central role linking emotional-affective with cognitive aspects. In the hippocampus, neuronal excitability is constrained by multiple GABAergic interneurons with highly specialized functions and an extensive repertoire of co-released neuromodulators. Neuropeptide Y (NPY) is one of these co-transmitters that significantly affects hippocampal signaling, with ample evidence supporting its fundamental role in emotional, cognitive, and metabolic circuitries. Here we investigated the role of NPY in relation to GABA, both released from the same interneurons of the dorsal dentate gyrus (DG), in different aspects of fear conditioning. We demonstrated that activation of dentate GABA neurons specifically during fear recall reduced cue-related as well as trace-related freezing behavior, whereas inhibition of the same neurons had no significant effects. Interestingly, concomitant overexpression of NPY in these neurons did not further modify fear recall, neither under baseline conditions nor upon chemogenetic stimulation. However, potentially increased co-release of NPY substantially reduced contextual fear, promoted extinction learning, and long-term suppression of fear in a foreground context-conditioning paradigm. Importantly, NPY in the dorsal DG was not only expressed in somatostatin neurons, but also in parvalbumin-positive basket cells and axoaxonic cells, indicating intense feedback and feedforward modulation of hippocampal signaling and precise curtailing of neuronal engrams. Thus, these findings suggest that co-release of NPY from specific interneuron populations of the dorsal DG modifies dedicated aspects of hippocampal processing by sharpening the activation of neural engrams and the consecutive fear response. Since inappropriate and generalized fear is the major impediment in the treatment of PTSD patients, the dentate NPY system may be a suitable access point to ameliorate PTSD symptoms and improve the inherent disease course.

16.
Elife ; 92020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33074102

RESUMO

Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses.


Research in biology generates many image datasets, mostly from microscopy. These images have to be analyzed, and much of this analysis relies on a human expert looking at the images and manually annotating features. Image datasets are often large, and human annotation can be subjective, so automating image analysis is highly desirable. This is where machine learning algorithms, such as deep learning, have proven to be useful. In order for deep learning algorithms to work first they have to be 'trained'. Deep learning algorithms are trained by being given a training dataset that has been annotated by human experts. The algorithms extract the relevant features to look out for from this training dataset and can then look for these features in other image data. However, it is also worth noting that because these models try to mimic the annotation behavior presented to them during training as well as possible, they can sometimes also mimic an expert's subjectivity when annotating data. Segebarth, Griebel et al. asked whether this was the case, whether it had an impact on the outcome of the image data analysis, and whether it was possible to avoid this problem when using deep learning for imaging dataset analysis. For this research, Segebarth, Griebel et al. used microscopy images of mouse brain sections, where a protein called cFOS had been labeled with a fluorescent tag. This protein typically controls the rate at which DNA information is copied into RNA, leading to the production of proteins. Its activity can be influenced experimentally by testing the behaviors of mice. Thus, this experimental manipulation can be used to evaluate the results of deep learning-based image analyses. First, the fluorescent images were interpreted manually by a group of human experts. Then, their results were used to train a large variety of deep learning models. Models were trained either on the results of an individual expert or on the results pooled from all experts to come up with a consensus model, a deep learning model that learned from the personal annotation preferences of all experts. This made it possible to test whether training a model on multiple experts reduces the risk of subjectivity. As the training of deep learning models is random, Segebarth, Griebel et al. also tested whether combining the predictions from multiple models in a so-called model ensemble improves the consistency of the analyses. For evaluation, the annotations of the deep learning models were compared to those of the human experts, to ensure that the results were not influenced by the subjective behavior of one person. The results of all bioimage annotations were finally compared to the experimental results from analyzing the mice's behaviors in order to check whether the models were able to find the behavioral effect on cFOS. Segebarth, Griebel et al. concluded that combining the expert knowledge of multiple experts reduces the subjectivity of bioimage annotation by deep learning algorithms. Combining such consensus information in a group of deep learning models improves the quality of bioimage analysis, so that the results are reliable, transparent and less subjective.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Animais , Aprendizado Profundo , Medo , Corantes Fluorescentes , Masculino , Camundongos , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Peixe-Zebra
17.
Synapse ; 63(3): 236-46, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19084906

RESUMO

In different behavioral paradigms including the elevated plus maze (EPM), it was observed previously that deletion of the neuropeptide Y Y2 receptor subtype results in potent suppression of anxiety-related and stress-related behaviors. To identify neurobiological correlates underlying this behavioral reactivtiy, expression of c-Fos, an established early marker of neuronal activation, was examined in Y2 receptor knockout (Y2(-/-)) vs. wildtype (WT) mice. Mice were placed on the open arm (OA) or closed arm (CA) of the EPM for 10 min and the effect on regional c-Fos expression in the brain was investigated. The number of c-Fos positive neurons was significantly increased in both WT and Y2(-/-) lines after OA and CA exposure in 51 of 54 regions quantified. These regions included various cortical, limbic, thalamic, hypothalamic, and hindbrain regions. Genotype influenced c-Fos responses to arm exposures in 6 of the 51 activated regions: the cingulate cortex, barrel field of the primary somatosensory cortex, nucleus accumbens, dorsal lateral septum, amygdala and lateral periaqueductal gray. These differences in neuronal activity responses to the novel environments were more pronounced after OA than after CA exposure. Mice lacking Y2 receptors exhibited reduced neuronal activation when compared to WT animals in response to the emotional stressors. Reduced neuronal excitability in the identified brain areas relevant to the processing of motivated, explorative as well as anxiety-related behaviors is suggested to contribute to the reduced anxiety-related behavior observed in Y2(-/-) mice.


Assuntos
Encéfalo/metabolismo , Emoções/fisiologia , Receptores de Neuropeptídeo Y/deficiência , Estresse Psicológico/genética , Animais , Encéfalo/anatomia & histologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fos/metabolismo
18.
Ann N Y Acad Sci ; 1455(1): 59-80, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31271235

RESUMO

Survival in a natural environment forces an individual into constantly adapting purposive behavior. Specified interoceptive neurons monitor metabolic and physiological balance and activate dedicated brain circuits to satisfy essential needs, such as hunger, thirst, thermoregulation, fear, or anxiety. Neuropeptides are multifaceted, central components within such life-sustaining programs. For instance, nutritional depletion results in a drop in glucose levels, release of hormones, and activation of hypothalamic and brainstem neurons. These neurons, in turn, release several neuropeptides that increase food-seeking behavior and promote food intake. Similarly, internal and external threats activate neuronal pathways of avoidance and defensive behavior. Interestingly, specific nuclei of the hypothalamus and extended amygdala are activated by both hunger and fear. Here, we introduce the relevant neuropeptides and describe their function in feeding and emotional-affective behaviors. We further highlight specific pathways and microcircuits, where neuropeptides may interact to identify prevailing homeostatic needs and direct respective compensatory behaviors. A specific focus will be on neuropeptide Y, since it is known for its pivotal role in metabolic and emotional pathways. We hypothesize that the orexigenic and anorexigenic properties of specific neuropeptides are related to their ability to inhibit fear and anxiety.


Assuntos
Medo , Fome , Neuropeptídeo Y/fisiologia , Animais , Encéfalo/fisiologia , Colecistocinina/fisiologia , Hormônio Liberador da Corticotropina/fisiologia , Grelina/fisiologia , Homeostase , Humanos , Leptina/fisiologia , Hormônios Estimuladores de Melanócitos/fisiologia
19.
Psychopharmacology (Berl) ; 236(1): 281-291, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30443793

RESUMO

RATIONALE: Return of fear by re-exposure to an aversive event is a major obstacle in the treatment of fear-related disorders. Recently, we demonstrated that local pharmacological stimulation of neuropeptide Y type 2 receptors (Y2R) in anteroventral bed nucleus of stria terminalis (BNSTav) facilitates fear extinction and attenuates retrieval of remote fear with or without concomitant extinction training. Whether Y2R activation could also protect against re-exposure to traumatic events is still unknown. OBJECTIVE: Therefore, we investigated reinstatement of remote fear following early Y2R manipulation in BNSTav in relation to concomitant extinction training in mice. METHODS: We combined local pharmacological manipulation of Y2Rs in BNSTav with or without extinction training and tested for reinstatement of remote fear 15 days later. Furthermore, we employed immediate early gene mapping to monitor related local brain activation. RESULTS: Y2R stimulation by local injection of NPY3-36 into BNSTav facilitated extinction, reduced fear reinstatement at remote stages, and mimicked the influence of extinction in groups without prior extinction training. In contrast, Y2R antagonism (JNJ-5207787) delayed extinction and increased reinstatement. Y2R treatment immediately before remote fear tests had no effect. Concomitantly, Y2R activation at early time points reduced the number of c-Fos positive neurons in BNSTav during testing of reinstated remote fear. CONCLUSION: Local Y2R stimulation in BNSTav promotes fear extinction and stabilizes suppression of reinstated fear through a long-term influence, even without extinction training. Thus, Y2Rs in BNST are crucial pharmacological targets for extinction-based remote fear suppression.


Assuntos
Extinção Psicológica/fisiologia , Medo/fisiologia , Neuropeptídeo Y/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/biossíntese , Núcleos Septais/metabolismo , Acrilamidas/administração & dosagem , Animais , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Infusões Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Piperidinas/administração & dosagem , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Núcleos Septais/efeitos dos fármacos
20.
Neuron ; 104(4): 781-794.e4, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31543297

RESUMO

Associative learning is thought to involve different forms of activity-dependent synaptic plasticity. Although previous studies have mostly focused on learning-related changes occurring at excitatory glutamatergic synapses, we found that associative learning, such as fear conditioning, also entails long-lasting functional and structural plasticity of GABAergic synapses onto pyramidal neurons of the murine basal amygdala. Fear conditioning-mediated structural remodeling of GABAergic synapses was associated with a change in mIPSC kinetics and an increase in the fraction of synaptic benzodiazepine-sensitive (BZD) GABAA receptors containing the α2 subunit without altering the intrasynaptic distribution and overall amount of BZD-GABAA receptors. These structural and functional synaptic changes were partly reversed by extinction training. These findings provide evidence that associative learning, such as Pavlovian fear conditioning and extinction, sculpts inhibitory synapses to regulate inhibition of active neuronal networks, a process that may tune amygdala circuit responses to threats.


Assuntos
Aprendizagem por Associação/fisiologia , Medo/fisiologia , Neurônios GABAérgicos/fisiologia , Plasticidade Neuronal/fisiologia , Tonsila do Cerebelo , Animais , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA