RESUMO
RNA splicing factors are frequently altered in cancer and can act as both oncoproteins and tumour suppressors. They have been found mutated or deregulated, justifying the growing interest in the targeting of splicing catalysis, splicing regulatory proteins, and/or specific, key altered splicing events. We recently showed that the DNA methylation alterations of CD34+CD15- chronic myeloid leukaemia (CML) cells affect, among others, alternative splicing genes, suggesting that spliceosome actors might be altered in chronic-phase (CP)-CML. We investigated the expression of 12 spliceosome genes known to be oncogenes or tumour suppressor genes in primary CP-CML CD34+ cells at diagnosis (n = 15). We found that CP-CML CD34+ cells had a distinct splicing signature profile as compared with healthy donor CD34+ cells or whole CP-CML cells, suggesting: (i) a spliceosome deregulation from the diagnosis time and (ii) an intraclonal heterogeneity. We could identify three profile types, but there was no relationship with a patient's characteristics. By incubating cells with TKI and/or a spliceosome-targeted drug (TG003), we showed that CP-CML CD34+ cells are both BCR::ABL and spliceosome dependent, with the combination of the two drugs showing an additive effect while sparing healthy donors cells. Our results suggest that the spliceosome may be a new potential target for the treatment of CML.
RESUMO
The presence of numerous mast cells (MCs) mixed with tumor cells in the bone marrow (BM) is a hallmark of the diagnosis of Waldenström's macroglobulinemia (WM). MCs have been shown to support lymphoplasmacytic cell growth, but there is thus far no demonstration of the prognostic impact of BM MC density in WM. We investigated BM MC density by sensitive and specific digital quantification, allowing the analysis of a large area infiltrated by BM tumor cells. A total of 65 WM patients were investigated, including 54 at diagnosis and 11 at relapse. Tryptase and CD20 immunohistochemisty staining was performed on contiguous sections of deparaffinized BM trephine biopsies. After numerization of each section, the BM surface area was manually marked out, excluding the bone framework and adipocytes to limit the analyses to only hematopoietic tissue. MCs were assessed using a digital tool previously used to quantify immune-cell infiltrates on tumor-tissue sections. Deep next-generation sequencing and allele-specific PCR were used to explore the MYD88 and CXCR4 mutational status. MC density was heterogeneous among the WM patients. An optimal MC density threshold (> 56 MC.mm-2) was defined according to ROC curve analysis of overall survival. A higher MC density (> 56 MC.mm-2) was associated with greater BM involvement by WM lymphoplasmacytic cells and less hepatosplenic involvement (p = 0.023). Furthermore, MC density significantly correlated with a higher ISSWM score (p = 0.0003) in symptomatic patients. Patients with a higher MC density showed shorter median OS (56.5 months vs. nonreached, p = 0.0004), even in multivariate analysis after controlling for other predictive variables, such as age, ISSWM score, and CXCR4 mutational status. In conclusion, MC density can be accurately measured in WM patients using a specific digital tool on well-outlined hematopoietic tissue surfaces. High MC density is associated with aggressive features and a poor clinical outcome, emphasizing the need for further investigation of the involvement of MCs in the pathophysiology of WM.
RESUMO
Accumulation in target cells is an essential pharmacokinetic step of targeted therapies. Tyrosine Kinase Inhibitors (TKI) against the BCR-ABL fusion protein in Chronic Phase-Chronic Myeloid Leukaemia (CP-CML) cells constitute a unique model in terms of efficacy, specificity, and in vivo demonstration of response heterogeneity by target cells. The overall therapeutic response to nilotinib is heterogeneous with no satisfactory explanation. To better understand the patients' response heterogeneity, we quantified nilotinib uptake by primary CP-CML cells in standardized conditions using flow cytometry, which allowed also distinguishing mature (polymorphonuclear cells) from immature (CD34+) cells. Nilotinib was undetectable in 13.3% of PMN and 40% of CD34+ cells. Moreover, in CD34+ cells, intracellular nilotinib did not completely abolish BCR-ABL activity (monitored by CrkL phosphorylation inhibition), although nilotinib accumulated well in most CD34+ cell samples. Intracellular nilotinib concentration was inversely correlated with disease burden parameters, Sokal score, and early haematologic response at day 6 ± 1 only in PMN, suggesting an intrinsic ability to limit nilotinib entry in the forms with higher tumor cell burdenat diagnosis. These findings suggest that nilotinib accumulation in CP-CML cells is influenced by individual characteristics and intra-clonal heterogeneity, and might be used for pharmacokinetic studies and to assess the therapeutic response.