RESUMO
The mechanisms of coordinated changes in proteome composition and their relevance for the differentiation of neutrophil granulocytes are not well studied. Here, we discover 2 novel human genetic defects in signal recognition particle receptor alpha (SRPRA) and SRP19, constituents of the mammalian cotranslational targeting machinery, and characterize their roles in neutrophil granulocyte differentiation. We systematically study the proteome of neutrophil granulocytes from patients with variants in the SRP genes, HAX1, and ELANE, and identify global as well as specific proteome aberrations. Using in vitro differentiation of human induced pluripotent stem cells and in vivo zebrafish models, we study the effects of SRP deficiency on neutrophil granulocyte development. In a heterologous cell-based inducible protein expression system, we validate the effects conferred by SRP dysfunction for selected proteins that we identified in our proteome screen. Thus, SRP-dependent protein processing, intracellular trafficking, and homeostasis are critically important for the differentiation of neutrophil granulocytes.
Assuntos
Células-Tronco Pluripotentes Induzidas , Proteoma , Animais , Humanos , Peixe-Zebra , Genética Humana , Mamíferos , Proteínas Adaptadoras de Transdução de SinalRESUMO
The concept of immune cell exhaustion/dysfunction has developed mainly to understand impaired type 1 immune responses, especially by CD8 T-cells against tumors or virus-infected cells, and has been applied to other lymphocytes. Natural killer (NK) cells and CD4 T cells support the efficient activation of CD8 T cells but exhibit dysfunctional phenotypes in tumor microenvironments and in chronic viral infections. In contrast, the concept of type 2 immune cell exhaustion/dysfunction is poorly established. Group 2 innate lymphoid cells (ILC2s) and T-helper 2 (Th2) cells are the major lymphocyte subsets that initiate and expand type 2 immune responses for antiparasitic immunity or allergy. In mouse models of chronic parasitic worm infections, Th2 cells display impaired type 2 immune responses. Chronic airway allergy induces exhausted-like ILC2s that quickly fall into activation-induced cell death to suppress exaggerated inflammation. Thus, the modes of exhaustion/dysfunction are quite diverse and rely on the types of inflammation and the cells. In this review, we summarize current knowledge of lymphocyte exhaustion/dysfunction in the context of type 1 and type 2 immune responses and discuss ILC2-specific regulatory mechanisms during chronic allergy.
Assuntos
Imunidade Inata , Animais , Humanos , Imunidade Inata/imunologia , Morte Celular/imunologia , Células Th2/imunologia , Linfócitos/imunologia , Ativação Linfocitária/imunologia , Células Th1/imunologia , Hipersensibilidade/imunologiaRESUMO
Hepatic stellate cells (HSCs) are pericytes of the liver responsible for liver fibrosis and cirrhosis, which are the end stages of chronic liver diseases. TGF-ß activates HSCs, leading to the differentiation of myofibroblasts in the process of liver fibrosis. While the heterogeneity of HSCs is appreciated in the fibrotic liver, it remains elusive which HSC subsets mainly contribute to fibrosis. Here, we show that the expression of the pericyte marker FoxD1 specifically marks a subset of HSCs in FoxD1-fate tracer mice. HSCs fate-mapped by FoxD1 were preferentially localized in the portal and peripheral areas of both the homeostatic and fibrotic liver induced by carbon tetrachloride. Furthermore, the deletion of Cbfß, which is necessary for TGF-ß signaling, in FoxD1-expressing cells ameliorated liver fibrosis. Thus, we identified an HSC subset that preferentially responds to liver injuries.
Assuntos
Fatores de Transcrição Forkhead , Células Estreladas do Fígado , Cirrose Hepática , Animais , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta/metabolismo , Masculino , Tetracloreto de Carbono/toxicidade , Fígado/metabolismo , Fígado/patologiaRESUMO
Dysregulated immune responses are essential underlying causes of a plethora of pathologies including cancer, autoimmunity, and immunodeficiency. We here investigated 4 patients from unrelated families presenting with immunodeficiency, autoimmunity, and malignancy. We identified 4 distinct homozygous mutations in TNFRSF9 encoding the tumor necrosis factor receptor superfamily member CD137/4-1BB, leading to reduced, or loss of, protein expression. Lymphocytic responses crucial for immune surveillance, including activation, proliferation, and differentiation, were impaired. Genetic reconstitution of CD137 reversed these defects. CD137 deficiency is a novel inborn error of human immunity characterized by lymphocytic defects with early-onset Epstein-Barr virus (EBV)-associated lymphoma. Our findings elucidate a functional role and relevance of CD137 in human immune homeostasis and antitumor responses.
Assuntos
Doenças Autoimunes/genética , Síndromes de Imunodeficiência/genética , Linfoma/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Doenças Autoimunes/imunologia , Feminino , Predisposição Genética para Doença , Humanos , Síndromes de Imunodeficiência/imunologia , Linfoma/imunologia , Masculino , Linhagem , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/deficiênciaRESUMO
Group 2 innate lymphoid cells (ILC2s) reside in peripheral tissues such as the lungs, skin, nasal cavity, and gut and provoke innate type 2 immunity against allergen exposure, parasitic worm infection, and respiratory virus infection by producing TH2 cytokines. Recent advances in understanding ILC2 biology revealed that ILC2s can be trained by IL-33 or allergic inflammation, are long-lived, and mount memory-like type 2 immune responses to any other allergens afterwards. In contrast, IL-33, together with retinoic acid, induces IL-10-producing immunosuppressive ILC2s. In this review, we discuss how the allergic cytokine milieu and other immune cells direct the generation of trained ILC2s with immunostimulatory or immunosuppressive recall capability in allergic diseases and infections associated with type 2 immunity. The molecular mechanisms of trained immunity by ILCs and the physiological relevance of trained ILC2s are also discussed.
Assuntos
Hipersensibilidade/imunologia , Imunidade Inata , Linfócitos/imunologia , Alarminas/imunologia , Animais , Comunicação Celular/imunologia , Humanos , Mediadores da Inflamação/imunologia , Interleucina-10/imunologia , Interleucina-33/imunologia , Lipídeos/imunologia , Neurônios/imunologia , Viroses/imunologiaRESUMO
The clathrin-dependent endocytic pathway is crucial for endosomal TLR3- and TLR4-mediated Toll-IL-1R domain-containing adaptor molecule-1 (TICAM-1) signaling. TLR4 uses a different signaling platform, plasma membrane and endosomes, for activation of TIRAP-MyD88 and TICAM-2-TICAM-1, respectively. LPS-induced endocytosis of TLR4 is mandatory for TICAM-1-mediated signaling including IFN-ß production. Several molecules/mechanisms such as CD14, clathrin, and phosphatidylinositol metabolism have been reported to act as inducers of TLR4 translocation. However, the molecular mechanism of spatiotemporal regulation of TLR4 signaling remains unresolved. We have previously shown that Raftlin is essential for clathrin-dependent endocytosis of TLR3 ligand in human epithelial cells and myeloid dendritic cells (DCs). In this article, we demonstrate that Raftlin also mediated LPS-induced TLR4 internalization and TICAM-1 signaling in human monocyte-derived DCs and macrophages (Mo-MÏs). When Raftlin was knocked down, LPS-induced TLR4-mediated IFN-ß promoter activation, but not NF-κB activation, was decreased in HEK293 cells overexpressing TLR4/MD-2 or TLR4/MD-2/CD14. LPS-induced IFN-ß production by monocyte-derived DCs and Mo-MÏs was significantly decreased by knockdown of Raftlin. Upon LPS stimulation, Raftlin moved from the cytoplasm to the plasma membrane in Mo-MÏs, where it colocalized with TLR4. Raftlin associated with clathrin-associated adaptor protein-2 in resting cells and transiently bound to TLR4 and clathrin at the cell surface in response to LPS. Thus, Raftlin appears to modulate cargo selection as an accessary protein of clathrin-associated adaptor protein-2 in clathrin-mediated endocytosis of TLR3/4 ligands.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Células Epiteliais/fisiologia , Proteínas de Membrana/metabolismo , Células Mieloides/fisiologia , Animais , Clatrina/metabolismo , Endocitose , Células HEK293 , Humanos , Interferon beta/metabolismo , Lipopolissacarídeos/imunologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Transdução de Sinais , Receptor 4 Toll-Like/metabolismoRESUMO
Compartmentalization of nucleic acid (NA)-sensing TLR3, 7, 8, and 9 is strictly regulated to direct optimal response against microbial infection and evade recognition of host-derived NAs. Uncoordinated 93 homolog B1 (UNC93B1) is indispensable for trafficking of NA-sensing TLRs from the endoplasmic reticulum (ER) to endosomes/lysosomes. UNC93B1 controls loading of the TLRs into COPII vesicles to exit from the ER and traffics with the TLRs in the steady state. Ligand-induced translocation also happens on NA-sensing TLRs. However, the molecular mechanism for ligand-dependent trafficking of TLRs from the ER to endosomes/lysosomes remains unclear. In this study, we demonstrated that leucine-rich repeat containing protein (LRRC) 59, an ER membrane protein, participated in trafficking of NA-sensing TLRs from the ER. Knockdown of LRRC59 reduced TLR3-, 8-, and 9-mediated, but not TLR4-mediated, signaling. Upon ligand stimulation, LRRC59 associated with UNC93B1 in a TLR-independent manner, which required signals induced by ligand internalization. Endosomal localization of endogenous TLR3 was decreased by silencing of LRRC59, suggesting that LRRC59 promotes UNC93B1-mediated translocation of NA-sensing TLRs from the ER upon infection. These findings help us understand how NA-sensing TLRs control their proper distribution in the infection/inflammatory state.
Assuntos
Retículo Endoplasmático/imunologia , Infecções/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana Transportadoras/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Retículo Endoplasmático/genética , Endossomos/genética , Endossomos/imunologia , Células HEK293 , Humanos , Infecções/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Transporte Proteico/genética , Transporte Proteico/imunologia , Transdução de Sinais/genética , Receptores Toll-Like/genéticaRESUMO
TLR4 triggers LPS signaling through the adaptors Toll/IL-1R domain-containing adaptor molecule (TICAM)-2 (also called TRAM) and TICAM-1 (also called TRIF), together with Toll/IL-1R domain-containing adaptor protein (TIRAP) and MyD88. The MyD88 pathway mediates early phase responses to LPS on the plasma membrane, whereas the TICAM pathway mediates late-phase responses, which induce the production of type I IFN and activation of inflammasomes. TICAM-2 bridges TLR4 and TICAM-1 for LPS signaling in the endosome. Recently, we identified an acidic motif, E87/D88/D89 in TICAM-2, that provides the interaction surfaces between TICAM-2 and TICAM-1. In the present study, we found additional D91/E92 in TICAM-2, conserved across species, that is crucial for TICAM-1 activation. The D91A/E92A mutant protein was distributed largely to the cytosol, despite myristoylation, suggesting its importance for assistance of membrane localization of TICAM-2. An ectopically expressed D91A/E92A mutant per se failed to activate TICAM-1, unlike its wild-type counterpart that forms self-aggregation, but it still retained the ability to pass LPS-mediated IFN regulatory factor (IRF)3 activation. In a TICAM-2 knockout human cell line expressing TLR4/MD-2 with or without CD14, overexpression of the D91A/E92A mutant did not activate IRF3, but upon LPS stimulation, it induced sufficient TLR4-mediated IRF3 activation with high coefficient colocalization. Hence, the D91/E92 motif guides TICAM-2 membrane localization and self-activation for signaling. Our results suggest the presence of two distinct steps underlying endosomal LPS signaling on TICAM-2 for TICAM-1 activation: TICAM-2 assembling in TLR4 and/or TICAM-2 self-activation. D91A/E92A of TICAM-2 selectively associates the TLR4-dependent TICAM-2 assembling, but not cytosolic TICAM-2 self-aggregation, to activate TICAM-1.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Membrana Celular/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Endossomos/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/genética , Antígeno 96 de Linfócito/metabolismo , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismoRESUMO
Nucleic acid-sensing TLRs are involved in both antimicrobial immune responses and autoimmune inflammation. TLR8 is phylogenetically and structurally related to TLR7 and TLR9, which undergo proteolytic processing in the endolysosomes to generate functional receptors. Recent structural analyses of human TLR8 ectodomain and its liganded form demonstrated that TLR8 is also cleaved, and both the N- and C-terminal halves contribute to ligand binding. However, the structures and ssRNA recognition mode of endogenous TLR8 in human primary cells are largely unknown. In this study, we show that proteolytic processing of TLR8 occurs in human monocytes and macrophages in a different manner compared with TLR7/9 cleavage. The insertion loop between leucine-rich repeats 14 and 15 in TLR8 is indispensable for the cleavage and stepwise processing that occurs in the N-terminal fragment. Both furin-like proprotein convertase and cathepsins contribute to TLR8 cleavage in the early/late endosomes. TLR8 recognizes viral ssRNA and endogenous RNA, such as microRNAs, resulting in the production of proinflammatory cytokines. Hence, localization sites of the receptors are crucial for the nucleic acid-sensing mode and downstream signaling.
Assuntos
Endossomos/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , RNA Viral/metabolismo , Receptor 8 Toll-Like/metabolismo , Sequência de Aminoácidos , Catepsinas/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Ligantes , Lisossomos/metabolismo , Macrófagos/química , Macrófagos/citologia , MicroRNAs/química , MicroRNAs/metabolismo , Dados de Sequência Molecular , Monócitos/química , Monócitos/citologia , Cultura Primária de Células , Pró-Proteína Convertase 1/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteólise , RNA Viral/química , Transdução de Sinais , Receptor 7 Toll-Like/química , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/química , Receptor 8 Toll-Like/genética , Receptor Toll-Like 9/química , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismoRESUMO
Immune-enhancing adjuvants usually targets antigen (Ag)-presenting cells to tune up cellular and humoral immunity. CD141(+) dendritic cells (DC) represent the professional Ag-presenting cells in humans. In response to microbial pattern molecules, these DCs upgrade the maturation stage sufficient to improve cross-presentation of exogenous Ag, and upregulation of MHC and costimulators, allowing CD4/CD8 T cells to proliferate and liberating cytokines/chemokines that support lymphocyte attraction and survival. These DCs also facilitate natural killer-mediated cell damage. Toll-like receptors (TLRs) and their signaling pathways in DCs play a pivotal role in DC maturation. Therefore, providing adjuvants in addition to Ag is indispensable for successful vaccine immunotherapy for cancer, which has been approved in comparison with antimicrobial vaccines. Mouse CD8α(+) DCs express TLR7 and TLR9 in addition to the TLR2 family (TLR1, 2, and 6) and TLR3, whereas human CD141(+) DCs exclusively express the TLR2 family and TLR3. Although human and mouse plasmacytoid DCs commonly express TLR7/9 to respond to their agonists, the results on mouse adjuvant studies using TLR7/9 agonists cannot be simply extrapolated to human adjuvant immunotherapy. In contrast, TLR2 and TLR3 are similarly expressed in both human and mouse Ag-presenting DCs. Bacillus Calmette-Guerin peptidoglycan and polyinosinic-polycytidylic acid are representative agonists for TLR2 and TLR3, respectively, although they additionally stimulate cytoplasmic sensors: their functional specificities may not be limited to the relevant TLRs. These adjuvants have been posted up to a certain achievement in immunotherapy in some cancers. We herein summarize the history and perspectives of TLR2 and TLR3 agonists in vaccine-adjuvant immunotherapy for cancer.
Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Anticâncer/imunologia , Imunoterapia/métodos , Receptor 2 Toll-Like/agonistas , Receptor 3 Toll-Like/agonistas , Animais , HumanosRESUMO
The innate immune system recognizes pathogen- and damage-associated molecular patterns using pattern-recognition receptors that activate a wide range of signalling cascades to maintain host homoeostasis against infection and inflammation. Endosomal TLR3 (Toll-like receptor 3), a type I transmembrane protein, senses RNAs derived from cells with viral infection or sterile tissue damage, leading to the induction of type I interferon and cytokine production, as well as dendritic cell maturation. It has been accepted that TLR3 recognizes perfect dsRNA, but little has been addressed experimentally with regard to the structural features of virus- or host-derived RNAs that activate TLR3. Recently, a TLR3 agonist was identified, which was a virus-derived 'structured' RNA with incomplete stem structures. Both dsRNA and structured RNA are similarly internalized through clathrin- and raftlin-dependent endocytosis and delivered to endosomal TLR3. The dsRNA uptake machinery, in addition to TLR3, is critical for extracellular viral RNA-induced immune responses. A wide spectrum of TLR3 ligand structures beyond dsRNA and their delivery systems provide new insights into the physiological role of TLR3 in virus- or host-derived RNA-induced immune responses. In the present paper, we focus on the system for extracellular recognition of RNA and its delivery to TLR3.
Assuntos
RNA de Cadeia Dupla/imunologia , RNA/imunologia , RNA/metabolismo , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/fisiologia , Animais , Humanos , Vírus de RNA/imunologia , RNA de Cadeia Dupla/metabolismo , RNA Viral/imunologia , Receptor 3 Toll-Like/metabolismoRESUMO
Mitochondrial metabolism is critical in hematopoietic stem cell maintenance and differentiation. Here, we present a step-by-step protocol to efficiently differentiate human induced pluripotent stem cells into myeloid progenitors by a robust feeder- and serum-free system. Furthermore, we provide a protocol to subsequently assess mitochondrial function in iPSC-derived myeloid progenitors. We comprehensively describe a protocol to analyze and to quantify key parameters of mitochondrial respiration of iPSC-derived myeloid progenitors by the Seahorse XFe96 Analyzer. Additionally, our protocol includes extensive troubleshooting suggestions. For complete details on the use and execution of this protocol, please refer to Fan et al. (2022).1.
Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Hematopoéticas , Células Progenitoras Mieloides/metabolismo , Respiração , Mitocôndrias/metabolismoRESUMO
While group-2 innate lymphoid cells (ILC2s) are highly proliferative in allergic inflammation, the removal of overactivated ILC2s in allergic diseases has not been investigated. We previously showed that chronic airway allergy induces "exhausted-like" dysfunctional ILC2s expressing T cell immunoreceptor with Ig and ITIM domains (TIGIT). However, the physiological relevance of these cells in chronic allergy remains elusive. To precisely identify and monitor TIGIT+ ILC2s, we generated TIGIT lineage tracer mice. Chronic allergy stably induced TIGIT+ ILC2s, which were highly activated, apoptotic, and were quickly removed from sites of chronic allergy. Transcripts from coding genes were globally suppressed in the cells, possibly due to reduced chromatin accessibility. Cell death in TIGIT+ ILC2s was enhanced by interactions with CD155 expressed on macrophages, whereas genetic ablation of Tigit or blockade by anti-TIGIT antagonistic antibodies promoted ILC2 survival, thereby deteriorating chronic allergic inflammation. Our work demonstrates that TIGIT shifts the fate of ILC2s toward activation-induced cell death, which could present a new therapeutic target for chronic allergies.
Assuntos
Hipersensibilidade , Imunidade Inata , Receptores Imunológicos , Animais , Camundongos , Morte Celular , Inflamação , Linfócitos , Receptores Imunológicos/genéticaRESUMO
The double-stranded RNA analog, poly(I:C), extracellularly activates both the endosomal Toll-like receptor (TLR) 3 and the cytoplasmic RNA helicase, melanoma differentiation-associated gene 5, leading to the production of type I interferons (IFNs) and inflammatory cytokines. The mechanism by which extracellular poly(I:C) is delivered to TLR3-positive organelles and the cytoplasm remains to be elucidated. Here, we show that the cytoplasmic lipid raft protein, Raftlin, is essential for poly(I:C) cellular uptake in human myeloid dendritic cells and epithelial cells. When Raftlin was silenced, poly(I:C) failed to enter cells and induction of IFN-ß production was inhibited. In addition, cellular uptake of B-type oligodeoxynucleotide that shares its uptake receptor with poly(I:C) was suppressed in Raftlin knockdown cells. Upon poly(I:C) stimulation, Raftlin was translocated from the cytoplasm to the plasma membrane where it colocalized with poly(I:C), and thereafter moved to TLR3-positive endosomes. Thus, Raftlin cooperates with the uptake receptor to mediate cell entry of poly(I:C), which is critical for activation of TLR3.
Assuntos
Células Dendríticas/metabolismo , Indutores de Interferon/farmacologia , Proteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Poli I-C/farmacologia , Receptor 3 Toll-Like/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Células Dendríticas/citologia , Endossomos/genética , Endossomos/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Interferon beta/biossíntese , Interferon beta/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Células Mieloides/citologia , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/genéticaRESUMO
The vertebrate immune system functions to eliminate invading foreign nucleic acids and foreign proteins from infectious diseases and malignant tumors. Because pathogens and cancer cells have unique amino acid sequences and motifs (e.g., microbe-associated molecular patterns, MAMPs) that are recognized as "non-self" to the host, immune enhancement is one strategy to eliminate invading cells. MAMPs contain nucleic acids specific or characteristic of the microbe and are potential candidates for immunostimulants or adjuvants. Adjuvants are included in many vaccines and are a way to boost immunity by deliberately administering them along with antigens. Although adjuvants are an important component of vaccines, it is difficult to evaluate their efficacy ex vivo and in vivo on their own (without antigens). In addition, inflammation induced by currently candidate adjuvants may cause adverse events, which is a hurdle to their approval as drugs. In addition, the lack of guidelines for evaluating the safety and efficacy of adjuvants in drug discovery research also makes regulatory approval difficult. Viral double-stranded (ds) RNA mimics have been reported as potent adjuvants, but the safety barrier remains unresolved. Here we present ARNAX, a noninflammatory nucleic acid adjuvant that selectively targets Toll-like receptor 3 (TLR3) in antigen-presenting dendritic cells (APCs) to safely induce antigen cross-presentation and subsequently induce an acquired immune response independent of inflammation. This review discusses the challenges faced in the clinical development of novel adjuvants.
Assuntos
Ácidos Nucleicos , Vacinas , Humanos , Adjuvantes Imunológicos/farmacologia , Sistema Imunitário , Adjuvantes Farmacêuticos , Antígenos , InflamaçãoRESUMO
The Toll-IL-1 receptor (TIR) domain-containing adaptor molecule-1 (TICAM-1, also called TRIF) is a signaling adaptor for TLR3 and TLR4 that activates the transcription factors IRF-3, NF-kappaB, and AP-1, leading to induction of type I interferon and cytokines. The N-terminal region of TICAM-1 participates in IRF-3 activation, although the C-terminal region is involved in NF-kappaB activation. However, the mechanism by which TICAM-1 is activated and transmits signals is largely unknown. In this study, we identified Leu(194) as a critical amino acid for TICAM-1-mediated IRF-3 activation. When Leu(194) was substituted with Ala, the mutant TICAM-1 failed to recruit the IRF-3 kinase TBK1, resulting in lack of IRF-3 phosphorylation, although TRAF3 and NAP1 appeared to be recruited. The N-terminal 176 amino acids of TICAM-1 (N-terminal domain (NTD)) form a protease-resistant structural domain. A TICAM-1 mutant lacking the N-terminal 180 amino acids showed greater interferon-beta promoter activation than wild-type TICAM-1. Furthermore, immunoprecipitation and protein-protein interaction analysis revealed that the NTD interacted with the N terminus of TICAM-1-TIR. These results suggest that the NTD folds into the TIR domain structure to maintain the naive conformation of TICAM-1. Upon stimulation of TLR3/4, TICAM-1 oligomerizes through the TIR domain and the C-terminal region, which may break the intramolecular association and induce a conformational change that allows TBK1 access to TICAM-1.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Mutação , Proteínas Adaptadoras de Transporte Vesicular/genética , Alanina/genética , Alanina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/genética , Linhagem Celular , Regulação da Expressão Gênica , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Fator Regulador 3 de Interferon/genética , Interferon beta/genética , Leucina/genética , Leucina/metabolismo , Luciferases/genética , Luciferases/metabolismo , Microscopia Confocal , Mutagênese Sítio-Dirigida , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , TransfecçãoRESUMO
RNA works as a genome and messenger in RNA viruses, and it sends messages in most of the creatures of the Earth, including viruses, bacteria, fungi, plants, and animals. The human innate immune system has evolved to detect single- and double-stranded RNA molecules from microbes by pattern recognition receptors and induce defense reactions against infections such as the production of type I interferons and inflammatory cytokines. To avoid cytokine toxicity causing chronic inflammation or autoimmunity by sensing self-RNA, the activation of RNA sensors is strictly regulated. All of the Toll-like receptors that recognize RNA are localized to endosomes/lysosomes, which require internalization of RNA for sensing through an endocytic pathway. RIG-I-like receptors sense RNA in cytosol. These receptors are expressed in a cell type-specific fashion, enabling sensing of RNA for a wide range of microbial invasions. At the same time, both endosomal and cytoplasmic receptors have strategies to respond only to RNA of pathogenic microorganisms or dying cells. RNA are potential vaccine adjuvants for immune enhancement against cancer and provide a benefit for vaccinations. Understanding the detailed molecular mechanisms of the RNA-sensing system will help us to broaden the clinical utility of RNA adjuvants for patients with incurable diseases.
Assuntos
Espaço Extracelular/metabolismo , Infecções/imunologia , RNA/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Vacinas/imunologia , Adjuvantes Imunológicos , Animais , Proteína DEAD-box 58/metabolismo , Humanos , Interferon Tipo I/metabolismo , RNA/imunologia , Receptores ImunológicosRESUMO
Pattern recognition receptors (PRRs) play a crucial role in the innate immune system and contribute to host defense against microbial infection. PRR-mediated antimicrobial signals provide robust type-I IFN/cytokine production and trigger inflammation, thereby affecting tumor progression and autoimmune diseases. Accumulating evidence demonstrates that among the PRRs, only the signaling pathway of endosomal toll-like receptor 3 (TLR3) induces no systemic inflammation and mediates cross-priming of antigen-specific CD8+ T cells by dendritic cells. Treatment with a newly developed TLR3-specific ligand, ARNAX, along with tumor-associated antigens (TAAs), induces tumor-specific cytotoxic T lymphocytes, modulates the tumor microenvironment to establish Th1-type antitumor immunity, and leads to tumor regression without inflammation in mouse tumor models. Combination therapy using ARNAX/TAA and PD-1/PD-L1 blockade potently enhances antitumor response and overcomes anti-PD-1/PD-L1 resistance. In this review, we will discuss the TLR3-mediated signaling in antitumor immunity and its application to cancer immunotherapy.
RESUMO
Ligand stimulation of the Toll-like receptors (TLRs) triggers innate immune response, cytokine production and cellular immune activation in dendritic cells. However, most TLR ligands are microbial constituents, which cause inflammation and toxicity. Toxic response could be reduced for secure immunotherapy through the use of chemically synthesized ligands with defined functions. Here we create an RNA ligand for TLR3 with no ability to activate the RIG-I/MDA5 pathway. This TLR3 ligand is a chimeric molecule consisting of phosphorothioate ODN-guided dsRNA (sODN-dsRNA), which elicits far less cytokine production than poly(I:C) in vitro and in vivo. The activation of TLR3/TICAM-1 pathway by sODN-dsRNA effectively induces natural killer and cytotoxic T cells in tumour-loaded mice, thereby establishing antitumour immunity. Systemic cytokinemia does not occur following subcutaneous or even intraperitoneal administration of sODN-dsRNA, indicating that TICAM-1 signalling with minute local cytokines sufficiently activate dendritic cells to prime tumoricidal effectors in vivo.