Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 558(7711): 573-576, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29950622

RESUMO

Scanning probe microscopy makes it possible to image and spectroscopically characterize nanoscale objects, and to manipulate1-3 and excite4-8 them; even time-resolved experiments are now routinely achieved9,10. This combination of capabilities has enabled proof-of-principle demonstrations of nanoscale devices, including logic operations based on molecular cascades 11 , a single-atom transistor 12 , a single-atom magnetic memory cell 13 and a kilobyte atomic memory 14 . However, a key challenge is fabricating device structures that can overcome their attraction to the underlying surface and thus protrude from the two-dimensional flatlands of the surface. Here we demonstrate the fabrication of such a structure: we use the tip of a scanning probe microscope to lift a large planar aromatic molecule (3,4,9,10-perylenetetracarboxylic-dianhydride) into an upright, standing geometry on a pedestal of two metal (silver) adatoms. This atypical and surprisingly stable upright orientation of the single molecule, which under all known circumstances adsorbs flat on metals15,16, enables the system to function as a coherent single-electron field emitter. We anticipate that other metastable adsorbate configurations might also be accessible, thereby opening up the third dimension for the design of functional nanostructures on surfaces.

2.
Angew Chem Int Ed Engl ; 60(10): 5078-5082, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33245197

RESUMO

Metalation and self-metalation reactions of porphyrins on oxide surfaces have recently gained interest. The mechanism of porphyrin self-metalation on oxides is, however, far from being understood. Herein, we show by a combination of results obtained with scanning tunneling microscopy, photoemission spectroscopy, and DFT computations, that the self-metalation of 2H-tetraphenylporphyrin on the surface of ultrathin MgO(001) films is promoted by charge transfer. By tuning the work function of the MgO(001)/Ag(001) substrate, we are able to control the charge and the metalation state of the porphyrin molecules on the surface.

3.
Nat Mater ; 18(8): 853-859, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31182779

RESUMO

Because materials consist of positive nuclei and negative electrons, electric potentials are omnipresent at the atomic scale. However, due to the long range of the Coulomb interaction, large-scale structures completely outshine small ones. This makes the isolation and quantification of the electric potentials that originate from nanoscale objects such as atoms or molecules very challenging. Here we report a non-contact scanning probe technique that addresses this challenge. It exploits a quantum dot sensor and the joint electrostatic screening by tip and surface, thus enabling quantitative surface potential imaging across all relevant length scales down to single atoms. We apply the technique to the characterization of a nanostructured surface, thereby extracting workfunction changes and dipole moments for important reference systems. This authenticates the method as a versatile tool to study the building blocks of materials and devices down to the atomic scale.

4.
Phys Rev Lett ; 120(20): 206801, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864317

RESUMO

We present a physically intuitive model of molecular quantum dots beyond the constant interaction approximation. It accurately describes their charging behavior and allows the extraction of important molecular properties that are otherwise experimentally inaccessible. The model is applied to data recorded with a noncontact atomic force microscope on three different molecules that act as a quantum dot when attached to the microscope tip. The results are in excellent agreement with first-principles simulations.

5.
Proc Natl Acad Sci U S A ; 111(2): 605-10, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24344291

RESUMO

The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust.


Assuntos
Elétrons , Modelos Teóricos , Teoria Quântica , Naftacenos/química , Perileno/química , Espectroscopia Fotoeletrônica , Prata/química , Propriedades de Superfície
6.
Phys Rev Lett ; 115(2): 026101, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26207484

RESUMO

We introduce a scanning probe technique that enables three-dimensional imaging of local electrostatic potential fields with subnanometer resolution. Registering single electron charging events of a molecular quantum dot attached to the tip of an atomic force microscope operated at 5 K, equipped with a qPlus tuning fork, we image the quadrupole field of a single molecule. To demonstrate quantitative measurements, we investigate the dipole field of a single metal adatom adsorbed on a metal surface. We show that because of its high sensitivity the technique can probe electrostatic potentials at large distances from their sources, which should allow for the imaging of samples with increased surface roughness.

7.
Phys Rev Lett ; 115(3): 036104, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26230807

RESUMO

Interfaces between organic molecules and solid surfaces play a prominent role in heterogeneous catalysis, molecular sensors and switches, light-emitting diodes, and photovoltaics. The properties and the ensuing function of such hybrid interfaces often depend exponentially on molecular adsorption heights and binding strengths, calling for well-established benchmarks of these two quantities. Here we present systematic measurements that enable us to quantify the interaction of benzene with the Ag(111) coinage metal substrate with unprecedented accuracy (0.02 Å in the vertical adsorption height and 0.05 eV in the binding strength) by means of normal-incidence x-ray standing waves and temperature-programed desorption techniques. Based on these accurate experimental benchmarks for a prototypical molecule-solid interface, we demonstrate that recently developed first-principles calculations that explicitly account for the nonlocality of electronic exchange and correlation effects are able to determine the structure and stability of benzene on the Ag(111) surface within experimental error bars. Remarkably, such precise experiments and calculations demonstrate that despite different electronic properties of copper, silver, and gold, the binding strength of benzene is equal on the (111) surface of these three coinage metals. Our results suggest the existence of universal binding energy trends for aromatic molecules on surfaces.

8.
Phys Rev Lett ; 113(22): 226101, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25494078

RESUMO

Recently, the family of high-resolution scanning probe imaging techniques using decorated tips has been complemented by a method based on inelastic electron tunneling spectroscopy (IETS). The new technique resolves the inner structure of organic molecules by mapping the vibrational energy of a single carbon monoxide (CO) molecule positioned at the apex of a scanning tunneling microscope (STM) tip. Here, we explain high-resolution IETS imaging by extending a model developed earlier for STM and atomic force microscopy (AFM) imaging with decorated tips. In particular, we show that the tip decorated with CO acts as a nanoscale sensor that changes the energy of its frustrated translation mode in response to changes of the local curvature of the surface potential. In addition, we show that high resolution AFM, STM, and IETS-STM images can deliver information about the charge distribution within molecules deposited on a surface. To demonstrate this, we extend our mechanical model by taking into account electrostatic forces acting on the decorated tip in the surface Hartree potential.

9.
Microsc Microanal ; 20(3): 968-73, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24717211

RESUMO

In low-energy electron microscopy (LEEM) we commonly encounter images which, beside amplitude contrast, also show signatures of phase contrast. The images are usually interpreted by following the evolution of the contrast during the experiment, and assigning gray levels to morphological changes. Through reconstruction of the exit wave, two aspects of LEEM can be addressed: (1) the resolution can be improved by exploiting the full information limit of the microscope and (2) electron phase shifts which contribute to the image contrast can be extracted. In this article, linear exit wave reconstruction from a through-focal series of LEEM images is demonstrated. As a model system we utilize a heteromolecular monolayer consisting of the organic molecules 3,4,9,10-perylene tetracarboxylic dianhydride and Cu-II-Phthalocyanine, adsorbed on a Ag(111) surface.

10.
Nat Commun ; 15(1): 2259, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480707

RESUMO

The discrete and charge-separated nature of matter - electrons and nuclei - results in local electrostatic fields that are ubiquitous in nanoscale structures and relevant in catalysis, nanoelectronics and quantum nanoscience. Surface-averaging techniques provide only limited experimental access to these potentials, which are determined by the shape, material, and environment of the nanostructure. Here, we image the potential over adatoms, chains, and clusters of Ag and Au atoms assembled on Ag(111) and quantify their surface dipole moments. By focusing on the total charge density, these data establish a benchmark for theory. Our density functional theory calculations show a very good agreement with experiment and allow a deeper analysis of the dipole formation mechanisms, their dependence on fundamental atomic properties and on the shape of the nanostructures. We formulate an intuitive picture of the basic mechanisms behind dipole formation, allowing better design choices for future nanoscale systems such as single-atom catalysts.

11.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081289

RESUMO

A high-current electron source for inverse photoemission spectroscopy is described. The source comprises a thermal cathode electron emission system, an electrostatic deflector-monochromator, and a lens system for variable kinetic energy (1.6-20 eV) at the target. When scaled to the energy resolution, the electron current is an order of magnitude higher than that of previously described electron sources developed in the context of electron energy loss spectroscopy. Surprisingly, the experimentally measured energy resolution turned out to be significantly better than calculated by standard programs, which include the electron-electron repulsion in the continuum approximation. The achieved currents are also significantly higher than predicted. We attribute this "inverse Boersch-effect" to a mechanism of velocity selection in the forward direction by binary electron-electron collisions.

12.
J Phys Chem C Nanomater Interfaces ; 127(28): 13817-13836, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37492192

RESUMO

A bold vision in nanofabrication is the assembly of functional molecular structures using a scanning probe microscope (SPM). This approach requires continuous monitoring of the molecular configuration during manipulation. Until now, this has been impossible because the SPM tip cannot simultaneously act as an actuator and an imaging probe. Here, we implement configuration monitoring using experimental data other than images collected during the manipulation process. We model the manipulation as a partially observable Markov decision process (POMDP) and approximate the actual configuration in real time using a particle filter. To achieve this, the models underlying the POMDP are precomputed and organized in the form of a finite-state automaton, allowing the use of complex atomistic simulations. We exemplify the configuration monitoring process and reveal structural motifs behind measured force gradients. The proposed methodology marks an important step toward the piece-by-piece creation of supramolecular structures in a robotic and possibly automated manner.

13.
Commun Chem ; 6(1): 136, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400714

RESUMO

Studying inorganic/organic hybrid systems is a stepping stone towards the design of increasingly complex interfaces. A predictive understanding requires robust experimental and theoretical tools to foster trust in the obtained results. The adsorption energy is particularly challenging in this respect, since experimental methods are scarce and the results have large uncertainties even for the most widely studied systems. Here we combine temperature-programmed desorption (TPD), single-molecule atomic force microscopy (AFM), and nonlocal density-functional theory (DFT) calculations, to accurately characterize the stability of a widely studied interface consisting of perylene-tetracarboxylic dianhydride (PTCDA) molecules on Au(111). This network of methods lets us firmly establish the adsorption energy of PTCDA/Au(111) via TPD (1.74 ± 0.10 eV) and single-molecule AFM (2.00 ± 0.25 eV) experiments which agree within error bars, exemplifying how implicit replicability in a research design can benefit the investigation of complex materials properties.

14.
Phys Rev Lett ; 108(10): 106103, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22463427

RESUMO

We present evidence for a partly chemisorptive bonding between single monolayers of copper-II-phthalocyanine (CuPc) and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) that are stacked on Ag(111). A commensurate registry between the two molecular layers and the substrate, i.e., a common crystallographic lattice for CuPc and PTCDA films as well as for the Ag(111) surface, indicates that the growth of the upper layer is dominated by the structure of the lower. Photoemission spectroscopy clearly reveals a gradual filling of the lowest unoccupied molecular orbital of PTCDA due to CuPc adsorption, which proves the chemisorptive character.

15.
Rev Sci Instrum ; 93(1): 013702, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104957

RESUMO

Multi-tip scanning tunneling microscopy (STM) is a powerful method to perform charge transport measurements at the nanoscale. With four STM tips positioned on the surface of a sample, four-point resistance measurements can be performed in dedicated geometric configurations. Here, we present an alternative to the most often used scanning electron microscope imaging to infer the corresponding tip positions. After the initial coarse positioning is monitored by an optical microscope, STM scanning itself is used to determine the inter-tip distances. A large STM overview scan serves as a reference map. Recognition of the same topographic features in the reference map and in small scale images with the individual tips allows us to identify the tip positions with an accuracy of about 20 nm for a typical tip spacing of ∼1µm. In order to correct for effects such as the non-linearity of the deflection, creep, and hysteresis of the piezoelectric elements of the STM, a careful calibration has to be performed.

16.
J Phys Chem C Nanomater Interfaces ; 126(15): 6880-6891, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35493697

RESUMO

Molecular nanofabrication with a scanning probe microscope (SPM) is a promising route toward the prototyping of metastable functional molecular structures and devices which do not form spontaneously. The aspect of mechanical stability is crucial for such structures, especially if they extend into the third dimension vertical to the surface. A prominent example is freestanding molecules fabricated on a metal which can function as field emitters or electric field sensors. Improving the stability of such molecular configurations is an optimization task involving many degrees of freedom and therefore best tackled by computational nanostructure design. Here, we use density functional theory to study 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) standing on the Ag(111) surface as well as on the tip of a scanning probe microscope. We cast our results into a simple set of design principles for such metastable structures, the validity of which we subsequently demonstrate in two computational case studies. Our work proves the capabilities of computational nanostructure design in the field of metastable molecular structures and offers the intuition needed to fabricate new devices without tedious trial and error.

17.
Nat Commun ; 13(1): 5148, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36055995

RESUMO

When a molecule interacts chemically with a metal surface, the orbitals of the molecule hybridise with metal states to form the new eigenstates of the coupled system. Spatial overlap and energy matching are determining parameters of the hybridisation. However, since every molecular orbital does not only have a characteristic spatial shape, but also a specific momentum distribution, one may additionally expect a momentum matching condition; after all, each hybridising wave function of the metal has a defined wave vector, too. Here, we report photoemission orbital tomography measurements of hybrid orbitals that emerge from molecular orbitals at a molecule-on-metal interface. We find that in the hybrid orbitals only those partial waves of the original orbital survive which match the metal band structure. Moreover, we find that the conversion of the metal's surface state into a hybrid interface state is also governed by momentum matching constraints. Our experiments demonstrate the possibility to measure hybridisation momentum-selectively, thereby enabling deep insights into the complicated interplay of bulk states, surface states, and molecular orbitals in the formation of the electronic interface structure at molecule-on-metal hybrid interfaces.

18.
Sci Adv ; 8(29): eabn0819, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867796

RESUMO

Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction.

19.
J Phys Chem C Nanomater Interfaces ; 126(10): 5036-5045, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35330758

RESUMO

Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT). We find pronounced differences in the structural arrangement of the molecules and the electronic properties at the metal/organic interfaces for the two substrates. While on Cu(110) the molecules adsorb with their long molecular axis parallel to the high symmetry substrate direction, on Ag(110), hexacene adsorbs in an azimuthally slightly rotated geometry with respect to the metal rows of the substrate. In both cases, molecular planes are oriented parallel to the substrate. A pronounced charge transfer from both substrates to different molecular states affects the effective charge of different C atoms of the molecule. Through analysis of experimental and theoretical data, we found out that on Ag(110) the LUMO of the molecule is occupied through charge transfer from the metal, whereas on Cu(110) even the LUMO+1 receives a charge. Interface dipoles are determined to a large extent by the push-back effect, which are also found to differ significantly between 6A/Ag(110) and 6A/Cu(110).

20.
J Am Chem Soc ; 133(42): 16847-51, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21962083

RESUMO

Individual Xe atoms as well as single CO and CH(4) molecules adsorbed at the tip apex of a scanning tunneling microscope (STM) function as microscopic force sensors that change the tunneling current in response to the forces acting from the surface. An STM equipped with any of these sensors is able to image the short-range Pauli repulsion and thus resolve the inner structure of large organic adsorbate molecules. Differences in the performance of the three studied sensors suggest that the sensor functionality can be tailored by tuning the interaction between the sensor particle and the STM tip.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA