Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arch Microbiol ; 205(4): 121, 2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36934358

RESUMO

The resistance to antimicrobials developed by several bacterial species has become one of the main health problems in recent decades. It has been widely reported that natural products are important sources of antimicrobial compounds. Considering that animal venoms are under-explored in this line of research, in this study, we screened the antibacterial activity of venoms of eight snake and five lepidopteran species from northeastern Argentina. Twofold serial dilutions of venoms were tested by the agar well-diffusion method and the minimum inhibitory concentration (MIC) determination against seven bacterial strains. We studied the comparative protein profile of the venoms showing antibacterial activity. Only the viperid and elapid venoms showed remarkable dose-dependent antibacterial activity towards most of the strains tested. Bothrops diporus venom showed the lowest MIC values against all the strains, and S. aureus ATCC 25923 was the most sensitive strain for all the active venoms. Micrurus baliocoryphus venom was unable to inhibit the growth of Enterococcus faecalis. Neither colubrid snake nor lepidopteran venoms exhibited activity on any bacterial strain tested. The snake venoms exhibiting antibacterial activity showed distinctive protein profiles by SDS-PAGE, highlighting that we could reveal for the first time the main protein families which may be thought to contribute to the antibacterial activity of M. baliocoryphus venom. This study paves the way to search for new antibacterial agents from Argentinian snake venoms, which may be a further opportunity to give an added value to the local biodiversity.


Assuntos
Venenos de Serpentes , Staphylococcus aureus , Animais , Argentina , Venenos de Serpentes/farmacologia , Bactérias , Antibacterianos/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-32950744

RESUMO

With the aim to widen the current knowledge of toxinological implications of bites from rear-fanged snakes and biological roles of their venoms, this study focuses on the biochemical composition and toxic effects of the venom of Leptodeira annulata pulchriceps from Argentina. We analyzed the protein composition by electrophoresis and mass spectrometry, and enzymatic properties by quantitative assays on different substrates. Additionally, we evaluated local and systemic toxicity in mice, and tested its cross-reactivity with elapid and viperid antivenoms used in Argentina. This venom showed features reminiscent of venoms from snakes of Bothrops genus, containing components ranging from ~17 to 75 kDa, which are mainly tissue-damaging toxins such as proteinases. Although showing low lethality to mice (LD50 = 20 µg/g body weight), prominent hemorrhage developed locally in mice intramuscularly and intradermally injected with the venom, and the minimum hemorrhagic dose was found to be 12.7 µg/mouse. This study is the first comprehensive investigation of the venom of L. a. pulchriceps, and sheds new light on differences between this and those of the other two subspecies of L. annulata. Additionally, the study provides new insights into the venom components of "colubrid" snakes, advocating for considering bites from this rich diversity of snakes as a public health problem that needs to be addressed worldwide.


Assuntos
Colubridae/metabolismo , Venenos de Serpentes , Animais , Argentina , Masculino , Camundongos , Peptídeo Hidrolases/análise , Venenos de Serpentes/química , Venenos de Serpentes/toxicidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-30448590

RESUMO

Megalopygids Megalopyge lanata and Podalia orsilochus are common causative agents of accidents in agricultural workers. These accidents are provoked by dermal contact at their larval stage and are characterized by cutaneous reactions, such as burning pain, edema and erythema, typically mild and self-limited. There is very little information about their venoms and their toxicological implications on human health. Thus, we employed proteomic techniques and biological assays to characterize venoms (bristle extracts) from caterpillars of both species collected from Misiones, Argentina. The electrophoretic profiles of both venoms were substantially different, and they presented proteins related to toxicity, such as serinepeptidases, serpins and lectins. P. orsilochus venom exhibited higher caseinolytic activity than M. lanata venom, agreeing with the fact that only P. orsilochus venom hydrolyzed human fibrin(ogen). In addition, the latter shortened the clotting time triggered by calcium. While the venom of M. lanata induced a mild inflammatory lesion in mouse skin, P. orsilochus venom caused prominent necrosis, inflammatory infiltration and hemorrhage at the site of venom injection. On the other hand, P. orsilochus venom was better recognized by Lonomia obliqua antivenom, although many of its proteins could not be cross-reacted, what may explain the difference in the clinical manifestations between accidents by Podalia and those by Lonomia. Altogether, this study provides relevant information about the pathophysiological mechanisms whereby both caterpillars can induce toxicity on human beings, and paves the way for novel discovery of naturally occurring bioactive compounds.


Assuntos
Venenos de Artrópodes/toxicidade , Mordeduras e Picadas de Insetos/etiologia , Mariposas , Animais , Venenos de Artrópodes/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Humanos , Larva/anatomia & histologia , Masculino , Espectrometria de Massas , Camundongos , Mariposas/anatomia & histologia , Pele/efeitos dos fármacos
4.
Am J Trop Med Hyg ; 74(5): 807-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16687684

RESUMO

Contact with a caterpillar of the genus Lonomia can result in a hemorrhagic syndrome. Lonomia obliqua venom activates prothrombin and factor X and promotes fibrinogenolytic activity. Although crude L. obliqua bristle extract can induce hemolytic activity in human and rat erythrocytes, there have been no reports of hemolysis in the cases of human contact. We report a confirmed human case of Lonomia venom-induced hemolysis.


Assuntos
Hemorragia/diagnóstico , Mordeduras e Picadas de Insetos/diagnóstico , Lepidópteros , Animais , Antivenenos/administração & dosagem , Venenos de Artrópodes/toxicidade , Testes de Coagulação Sanguínea , Brasil , Diagnóstico Diferencial , Tratamento de Emergência , Hemólise , Hemorragia/induzido quimicamente , Hemorragia/complicações , Hemorragia/patologia , Hemorragia/terapia , Humanos , Mordeduras e Picadas de Insetos/complicações , Mordeduras e Picadas de Insetos/patologia , Mordeduras e Picadas de Insetos/terapia , Masculino , Pessoa de Meia-Idade
5.
Vet Parasitol ; 224: 60-64, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27270391

RESUMO

The current study summarizes the postmortem examination of a specimen of Oxyrhopus guibei (Serpentes, Colubridae) collected in Iguazu National Park (Argentina), and found deceased a week following arrival to the serpentarium of the National Institute of Tropical Medicine (Argentina). Although the snake appeared to be in good health, a necropsy performed following its death identified the presence of a large number of roundworms in the coelomic cavity, with indications of peritonitis and serosal adherence. Additional observations from the necropsy revealed small calcifications in the mesothelium of the coelomic cavity; solid and expressive content in the gallbladder; massive gastrointestinal obstruction due to nematodes; and lung edema and congestion. Histopathological analyses of lung sections also showed proliferative heterophilic and histiocytic pneumonia. Parasites isolated from both the intestine and coelomic cavity were identified as Hexametra boddaertii by a combination of light and scanning electron microscopic examination. Results from this necropsy identify O. guibei as a new host for H. boddaertii, and is the first report of a natural infection by Hexametra in Argentina. Since Hexametra parasites may contribute to several pathological conditions in humans, and with the recent availability of O. guibei specimens through the illegal pet trade, it is necessary to consider the possibility of zoonotic helminth transmission of Hexametra from snake to human.


Assuntos
Animais de Zoológico/parasitologia , Colubridae/parasitologia , Nematoides/fisiologia , Infecções por Nematoides/veterinária , Animais , Argentina , Evolução Fatal , Especificidade de Hospedeiro , Nematoides/classificação , Nematoides/ultraestrutura , Infecções por Nematoides/parasitologia , Infecções por Nematoides/patologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-22974712

RESUMO

Opisthoglyphous snake venoms remain under-explored despite being promising sources for ecological, evolutionary and biomedical/biotechnological research. Herein, we compared the protein composition and enzymatic properties of the venoms of Philodryas baroni (PbV), Philodryas olfersii olfersii (PooV) and Philodryas patagoniensis (PpV) from South America, and Hypsiglena torquata texana (HttV) and Trimorphodon biscutatus lambda (TblV) from North America. All venoms degraded azocasein, and this metalloproteinase activity was significantly inhibited by EDTA. PooV exhibited the highest level of catalytic activity towards synthetic substrates for serine proteinases. All venoms hydrolyzed acetylthiocholine at low levels, and only TblV showed phospholipase A(2) activity. 1D and 2D SDS-PAGE profile comparisons demonstrated species-specific components as well as several shared components. Size exclusion chromatograms from the three Philodryas venoms and HttV were similar, but TblV showed a notably different pattern. MALDI-TOF MS of crude venoms revealed as many as 49 distinct protein masses, assigned to six protein families. MALDI-TOF/TOF MS analysis of tryptic peptides confirmed the presence of cysteine-rich secretory proteins in all venoms, as well as a phospholipase A(2) and a three-finger toxin in TblV. Broad patterns of protein composition appear to follow phylogenetic lines, with finer scale variation likely influenced by ecological factors such as diet and habitat.


Assuntos
Colubridae/metabolismo , Proteoma , Venenos de Serpentes/metabolismo , Animais , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , América do Norte , América do Sul , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Toxicon ; 58(1): 28-34, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21601589

RESUMO

Leishmania parasites of several species cause cutaneous and visceral disease to millions of people worldwide, and treatment for this vector-borne protozoan parasite typically involves administration of highly toxic antimonial drugs. Snake venoms are one of the most concentrated enzyme sources in nature, displaying a broad range of biological effects, and several drugs now used in humans were derived from venoms. In this study, we compared the effects of the venoms of the South American rear-fanged snakes Philodryas baroni (PbV), Philodryas olfersii olfersii (PooV) and Philodryas patagoniensis (PpV), and the North American rear-fanged snakes Hypsiglena torquata texana (HttV) and Trimorphodon biscutatus lambda (TblV), on the growth of Leishmania major, a causative agent of cutaneous leishmaniasis. Different concentrations of each venom were incubated with the log-phase promastigote stage of L. major. TblV showed significant anti-leishmanial activity (IC50 of 108.6 µg/mL) at its highest concentrations; however, it induced parasite proliferation at intermediate concentrations. PpV was not very active in decreasing the parasitic growth, and a high final concentration (1.7 mg/mL) was necessary to inhibit proliferation by only 51.5% ± 3.6%. PbV, PooV and HttV, at final concentrations of 562, 524 and 438 µg/mL respectively, had no significant effect on L. major growth. The phospholipase A2 of TblV (trimorphin) was isolated and assayed as for crude venom, and it also exhibited dose-dependent biphasic effects on the parasite culture, with potent cytotoxicity at higher concentrations (IC50 of 0.25 µM; 3.6 µg/mL) and stimulation of proliferation at very low concentrations. Anti-leishmanial activity of TblV appears to be solely due to the action of trimorphin. This is the first report of anti-leishmanial activity of rear-fanged snake venoms, and these results suggest novel possibilities for discovering new protein-based drugs that might be used as possible agents against leishmaniasis as well as tools to study the biology of Leishmania parasites.


Assuntos
Antiparasitários/farmacologia , Leishmania major/efeitos dos fármacos , Venenos de Serpentes/farmacologia , Animais , Antiparasitários/química , Antiparasitários/isolamento & purificação , Colubridae/metabolismo , Leishmania major/crescimento & desenvolvimento , Espectrometria de Massas , Venenos de Serpentes/química
8.
Hum Exp Toxicol ; 30(10): 1567-74, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21247992

RESUMO

Loxosceles venoms can promote severe local and systemic damages. We have previously reported that Loxosceles gaucho spider venom causes a severe early thrombocytopenia in rabbits. Herein, we investigated the in vitro effects of this venom and its sphingomyelinase fraction on the main functions of platelets. Whole venom and its fraction induced aggregation of both human and rabbit platelets. Aggregation was dependent of plasma component(s) but independent of venom-induced lysophosphatidic acid generation. There was no increase in the levels of lactate dehydrogenase during platelet aggregation, ruling out the possibility of platelet lysis. The increased expression of ligand-induced binding site 1 (LIBS1) induced by L. gaucho venom and its sphingomyelinase fraction, as well as of P-selectin by the whole venom, evidenced the activation state of both human and rabbit platelets. Adhesion assays showed an irregular response when platelets were exposed to the whole venom, whereas the sphingomyelinase fraction induced a dose-dependent increase in the platelet adhesion to collagen. These findings evidence that L. gaucho venom and its sphingomyelinase fraction trigger adhesion, activation, and aggregation of both human and rabbit platelets. Thus, this work justifies the use of rabbits to investigate Loxosceles venom-induced platelet disturbances, and it also supports research on the role of platelets in the pathogenesis of loxoscelism.


Assuntos
Plaquetas/efeitos dos fármacos , Modelos Animais , Diester Fosfórico Hidrolases/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Coelhos/sangue , Esfingomielina Fosfodiesterase/farmacologia , Venenos de Aranha/farmacologia , Animais , Sítios de Ligação , Plaquetas/fisiologia , Humanos , Técnicas In Vitro , Integrina beta3/sangue , Selectina-P/sangue , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Glicoproteína IIb da Membrana de Plaquetas/sangue
9.
Artigo em Inglês | MEDLINE | ID: mdl-19285568

RESUMO

Cysteine-rich secretory proteins (CRiSPs) are widespread in reptile venoms, but most have functions that remain unknown. In the present study we describe the purification and characterization of a CRiSP (patagonin) from the venom of the rear-fanged snake Philodryas patagoniensis, and demonstrate its biological activity. Patagonin is a single-chain protein, exhibiting a molecular mass of 24,858.6 Da, whose NH(2)-terminal and MS/MS-derived sequences are nearly identical to other snake venom CRiSPs. The purified protein hydrolyzed neither azocasein nor fibrinogen, and it could induce no edema, hemorrhage or inhibition of platelet adhesion and aggregation. In addition, patagonin did not inhibit contractions of rat aortic smooth muscle induced by high K(+). However, it caused muscular damage to murine gastrocnemius muscle, an action that has not been previously described for any snake venom CRiSPs. Thus, patagonin will be important for studies of the structure-function and evolutionary relationships of this family of proteins that are widely distributed among snake venoms.


Assuntos
Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/isolamento & purificação , Venenos de Serpentes/genética , Venenos de Serpentes/isolamento & purificação , Sequência de Aminoácidos , Animais , Masculino , Glicoproteínas de Membrana/toxicidade , Camundongos , Dados de Sequência Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Ratos , Ratos Wistar , Venenos de Serpentes/toxicidade
11.
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP, SESSP-IBACERVO | ID: biblio-1062173

RESUMO

Cysteine-rich secretory proteins (CRiSPs) are widespread in reptile venoms, but most have functions thatremain unknown. In the present study we describe the purification and characterization of a CRiSP(patagonin) from the venom of the rear-fanged snake Philodryas patagoniensis, and demonstrate itsbiological activity. Patagonin is a single-chain protein, exhibiting a molecular mass of 24,858.6 Da, whoseNH2-terminal and MS/MS-derived sequences are nearly identical to other snake venom CRiSPs. The purifiedprotein hydrolyzed neither azocasein nor fibrinogen, and it could induce no edema, hemorrhage or inhibitionof platelet adhesion and aggregation. In addition, patagonin did not inhibit contractions of rat aortic smoothmuscle induced by high K+. However, it caused muscular damage to murine gastrocnemius muscle, an actionthat has not been previously described for any snake venom CRiSPs. Thus, patagonin will be important forstudies of the structure-function and evolutionary relationships of this family of proteins that are widelydistributed among snake venoms.


Assuntos
Animais , Colubridae/classificação , Serpentes/classificação , Venenos de Serpentes/análise , Venenos de Serpentes/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA