Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
EMBO J ; 40(14): e105712, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34057742

RESUMO

During development, neural progenitors are in proliferative and immature states; however, the molecular machinery that cooperatively controls both states remains elusive. Here, we report that cyclin D1 (CCND1) directly regulates both proliferative and immature states of cerebellar granule cell progenitors (GCPs). CCND1 not only accelerates cell cycle but also upregulates ATOH1 protein, an essential transcription factor that maintains GCPs in an immature state. In cooperation with CDK4, CCND1 directly phosphorylates S309 of ATOH1, which inhibits additional phosphorylation at S328 and consequently prevents S328 phosphorylation-dependent ATOH1 degradation. Additionally, PROX1 downregulates Ccnd1 expression by histone deacetylation of Ccnd1 promoter in GCPs, leading to cell cycle exit and differentiation. Moreover, WNT signaling upregulates PROX1 expression in GCPs. These findings suggest that WNT-PROX1-CCND1-ATOH1 signaling cascade cooperatively controls proliferative and immature states of GCPs. We revealed that the expression and phosphorylation levels of these molecules dynamically change during cerebellar development, which are suggested to determine appropriate differentiation rates from GCPs to GCs at distinct developmental stages. This study contributes to understanding the regulatory mechanism of GCPs as well as neural progenitors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Ciclina D1/metabolismo , Grânulos Citoplasmáticos/metabolismo , Fosforilação/fisiologia , Células-Tronco/metabolismo , Animais , Ciclo Celular/genética , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Proteínas Hedgehog/metabolismo , Camundongos , Neurogênese/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição
2.
Genes Cells ; 29(3): 192-206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38269481

RESUMO

Low-grade neuroepithelial tumors are major causes of drug-resistant focal epilepsy. Clinically, these tumors are defined as low-grade epilepsy-associated neuroepithelial tumors (LEATs). The BRAF V600E mutation is frequently observed in LEAT and linked to poor seizure outcomes. However, its molecular role in epileptogenicity remains elusive. To understand the molecular mechanism underlying the epileptogenicity in LEAT with the BRAF V600E genetic mutation (BRAF V600E-LEAT), we conducted RNA sequencing (RNA-seq) analysis using surgical specimens of BRAF V600E-LEAT obtained and stored at a single institute. We obtained 21 BRAF V600E-LEAT specimens and 4 control specimens, including 24 from Japanese patients and 1 from a patient of Central Asian origin, along with comprehensive clinical data. We submitted the transcriptome dataset of 21 BRAF V600E-LEAT plus 4 controls, as well as detailed clinical information, to a public database. Preliminary bioinformatics analysis using this dataset identified 2134 differentially expressed genes between BRAF V600E-LEAT and control. Additionally, gene set enrichment analysis provided novel insights into the association between estrogen response-related pathways and the epileptogenicity of BRAF V600E-LEAT patients. Our datasets and findings will contribute toward the understanding of the pathology of epilepsy caused by LEAT and the identification of new therapeutic targets.


Assuntos
Neoplasias Encefálicas , Epilepsia , Neoplasias Neuroepiteliomatosas , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Epilepsia/genética , Epilepsia/complicações , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/metabolismo , Neoplasias Neuroepiteliomatosas/patologia , Transcriptoma , Mutação
4.
Genes Cells ; 26(3): 136-151, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33501714

RESUMO

The molecular mechanisms underlying neurodevelopmental disorders (NDDs) remain unclear. We previously identified Down syndrome cell adhesion molecule like 1 (Dscaml1) as a responsible gene for Ihara epileptic rat (IER), a rat model for human NDDs with epilepsy. However, the relationship between NDDs and DSCAML1 in humans is still elusive. In this study, we screened databases of autism spectrum disorders (ASD), intellectual disability (ID)/developmental disorders (DD) and schizophrenia for genomic mutations in human DSCAML1. We then performed in silico analyses to estimate the potential damage to the mutated DSCAML1 proteins and chose three representative mutations (DSCAML1C729R , DSCAML1R1685* and DSCAML1K2108Nfs*37 ), which lacked a cysteine residue in the seventh Ig domain, the intracellular region and the C-terminal PDZ-binding motif, respectively. In overexpression experiments in a cell line, DSCAML1C729R lost its mature N-glycosylation, whereas DSCAML1K2108Nfs*37 was abnormally degraded via proteasome-dependent protein degradation. Furthermore, in primary hippocampal neurons, the ability of the wild-type DSCAML1 to regulate the number of synapses was lost with all mutant proteins. These results provide insight into understanding the roles of the domains in the DSCAML1 protein and further suggest that these mutations cause functional changes, albeit through different mechanisms, that likely affect the pathophysiology of NDDs.


Assuntos
Moléculas de Adesão Celular/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Animais , Transtorno do Espectro Autista/genética , Adesão Celular , Membrana Celular/metabolismo , Espinhas Dendríticas/metabolismo , Feminino , Glicosilação , Hipocampo/patologia , Humanos , Células L , Masculino , Camundongos , Anotação de Sequência Molecular , Proteínas Mutantes/metabolismo , Proteólise , Ratos Wistar , Esquizofrenia/genética , Sinapses/metabolismo
5.
Genes Cells ; 25(12): 796-810, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33020978

RESUMO

A proper balance between proliferation and differentiation of cerebellar granule cell precursors (GCPs) is required for appropriate cerebellar morphogenesis. The Skp1-Cullin1-F-box (SCF) complex, an E3 ubiquitin ligase complex, is involved in polyubiquitination and subsequent degradation of various cell cycle regulators and transcription factors. However, it remains unknown how the SCF complex affects proliferation and differentiation of GCPs. In this study, we found that the scaffold protein Cullin1, and F-box proteins Skp2, ß-TrCP1 and ß-TrCP2 are expressed in the external granule layer (EGL). Knockdown of these molecules in the EGL showed that Cullin1, Skp2 and ß-TrCP2 enhanced differentiation of GCPs. We also observed accumulation of cyclin-dependent kinase inhibitor p27 in GCPs when treated with a Cullin1 inhibitor or proteasome inhibitor. Furthermore, knockdown of p27 rescued enhancement of differentiation by Cullin1 knockdown. These results suggest that the SCF complex is involved in the maintenance of the proliferative state of GCPs through p27 degradation. In addition, inhibition of Cullin1 activity also prevented cell proliferation and enhanced accumulation of p27 in Daoy cells, a cell line derived from the sonic hedgehog subtype of medulloblastoma. This suggested that excess degradation of p27 through the SCF complex causes overproliferation of medulloblastoma cells.


Assuntos
Cerebelo/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Cerebelo/metabolismo , Proteínas Culina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos ICR , Células-Tronco Neurais/citologia , Proteínas Quinases Associadas a Fase S/genética , Ubiquitinação
6.
Genes Cells ; 24(1): 41-59, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30422377

RESUMO

The layer structure has been intensively characterized in the developing neocortex and cerebellum based on the various molecular markers. However, as to the developing dorsal midbrain, comprehensive analyses have not been intensely carried out, and thus, the name as well as the definition of each layer is not commonly shared. Here, we redefined the three layers, such as the ventricular zone, intermediate zone and marginal zone, based on various markers for proliferation and differentiation in embryonic dorsal midbrain. Biphasic Ki67 expression defines the classical VZ, in which there is clear separation of the mitotic and interphase zones. Next, we mapped the distribution of immature neurons to the defined layers, based on markers for glutamatergic and GABAergic lineage. Interestingly, Tbr2 and Neurog2 were expressed in the postmitotic neurons. We also report that active (phosphorylated) JNK is a useful marker to demarcate layers during the embryonic stage. Finally, we validated the final arrival layers of the migratory glutamatergic and GABAergic neurons. These results form a foundation for analyses of brain development, especially in the proliferation and migration of excitatory and inhibitory neurons in the dorsal midbrain.


Assuntos
Desenvolvimento Embrionário , Mesencéfalo/citologia , Mesencéfalo/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Endogâmicos ICR , Mitose , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição/metabolismo
7.
J Neurosci ; 38(5): 1277-1294, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29317485

RESUMO

Cerebellar granule cell precursors (GCPs) and granule cells (GCs) represent good models to study neuronal development. Here, we report that the transcription factor myeloid ectopic viral integration site 1 homolog (Meis1) plays pivotal roles in the regulation of mouse GC development. We found that Meis1 is expressed in GC lineage cells and astrocytes in the cerebellum during development. Targeted disruption of the Meis1 gene specifically in the GC lineage resulted in smaller cerebella with disorganized lobules. Knock-down/knock-out (KO) experiments for Meis1 and in vitro assays showed that Meis1 binds to an upstream sequence of Pax6 to enhance its transcription in GCPs/GCs and also suggested that the Meis1-Pax6 cascade regulates morphology of GCPs/GCs during development. In the conditional KO (cKO) cerebella, many Atoh1-positive GCPs were observed ectopically in the inner external granule layer (EGL) and a similar phenomenon was observed in cultured cerebellar slices treated with a bone morphogenic protein (BMP) inhibitor. Furthermore, expression of Smad proteins and Smad phosphorylation were severely reduced in the cKO cerebella and Meis1-knock-down GCPs cerebella. Reduction of phosphorylated Smad was also observed in cerebellar slices electroporated with a Pax6 knock-down vector. Because it is known that BMP signaling induces Atoh1 degradation in GCPs, these findings suggest that the Meis1-Pax6 pathway increases the expression of Smad proteins to upregulate BMP signaling, leading to degradation of Atoh1 in the inner EGL, which contributes to differentiation from GCPs to GCs. Therefore, this work reveals crucial functions of Meis1 in GC development and gives insights into the general understanding of the molecular machinery underlying neural differentiation from neural progenitors.SIGNIFICANCE STATEMENT We report that myeloid ectopic viral integration site 1 homolog (Meis1) plays pivotal roles in the regulation of mouse granule cell (GC) development. Here, we show Meis1 is expressed in GC precursors (GCPs) and GCs during development. Our knock-down and conditional knock-out (cKO) experiments and in vitro assays revealed that Meis1 is required for proper cerebellar structure formation and for Pax6 transcription in GCPs and GCs. The Meis1-Pax6 cascade regulates the morphology of GCs. In the cKO cerebella, Smad proteins and bone morphogenic protein (BMP) signaling are severely reduced and Atoh1-expressing GCPs are ectopically detected in the inner external granule layer. These findings suggest that Meis1 regulates degradation of Atoh1 via BMP signaling, contributing to GC differentiation in the inner EGL, and should provide understanding into GC development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/genética , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Proteína Meis1/fisiologia , Fator de Transcrição PAX6/biossíntese , Fator de Transcrição PAX6/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Animais , Astrócitos/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Grânulos Citoplasmáticos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Fosforilação , Gravidez , Proteínas Smad/metabolismo
8.
J Neurosci ; 34(14): 4786-800, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24695699

RESUMO

In the cerebellum, the bHLH transcription factors Ptf1a and Atoh1 are expressed in distinct neuroepithelial regions, the ventricular zone (VZ) and the rhombic lip (RL), and are required for producing GABAergic and glutamatergic neurons, respectively. However, it is unclear whether Ptf1a or Atoh1 is sufficient for specifying GABAergic or glutamatergic neuronal fates. To test this, we generated two novel knock-in mouse lines, Ptf1a(Atoh1) and Atoh1(Ptf1a), that are designed to express Atoh1 and Ptf1a ectopically in the VZ and RL, respectively. In Ptf1a(Atoh1) embryos, ectopically Atoh1-expressing VZ cells produced glutamatergic neurons, including granule cells and deep cerebellar nuclei neurons. Correspondingly, in Atoh1(Ptf1a) animals, ectopically Ptf1a-expressing RL cells produced GABAergic populations, such as Purkinje cells and GABAergic interneurons. Consistent results were also obtained from in utero electroporation of Ptf1a or Atoh1 into embryonic cerebella, suggesting that Ptf1a and Atoh1 are essential and sufficient for GABAergic versus glutamatergic specification in the neuroepithelium. Furthermore, birthdating analyses with BrdU in the knock-in mice or with electroporation studies showed that ectopically produced fate-changed neuronal types were generated at temporal schedules closely simulating those of the wild-type RL and VZ, suggesting that the VZ and RL share common temporal information. Observations of knock-in brains as well as electroporated brains revealed that Ptf1a and Atoh1 mutually negatively regulate their expression, probably contributing to formation of non-overlapping neuroepithelial domains. These findings suggest that Ptf1a and Atoh1 specify spatial identities of cerebellar neuron progenitors in the neuroepithelium, leading to appropriate production of GABAergic and glutamatergic neurons, respectively.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cerebelo/citologia , Ácido Glutâmico/metabolismo , Células-Tronco Neurais/fisiologia , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Cerebelo/embriologia , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Fatores de Transcrição/genética
9.
J Neurosci ; 34(36): 12168-81, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25186760

RESUMO

During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear. Here, using 14-3-3ε/ζ double knock-out mice, we found that 14-3-3 proteins are important for proliferation and differentiation of neural progenitor cells in the cortex, resulting in neuronal migration defects and seizures. 14-3-3 deficiency resulted in the increase of δ-catenin and the decrease of ß-catenin and αN-catenin. 14-3-3 proteins regulated neuronal differentiation into neurons via direct interactions with phosphorylated δ-catenin to promote F-actin formation through a catenin/Rho GTPase/Limk1/cofilin signaling pathway. Conversely, neuronal migration defects seen in the double knock-out mice were restored by phosphomimic Ndel1 mutants, but not δ-catenin. Our findings provide new evidence that 14-3-3 proteins play important roles in neurogenesis and neuronal migration via the regulation of distinct signaling cascades.


Assuntos
Proteínas 14-3-3/metabolismo , Córtex Cerebral/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Proteínas 14-3-3/genética , Actinas/metabolismo , Animais , Cateninas/metabolismo , Movimento Celular , Proliferação de Células , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Ligação Proteica
10.
Nat Commun ; 15(1): 458, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302444

RESUMO

In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.


Assuntos
Neuroglia , Neurônios , Animais , Camundongos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Cerebelo/metabolismo , Ácido Glutâmico/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Células de Purkinje/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA