Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Ther ; 29(7): 2219-2226, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-33992805

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans. Despite several emerging vaccines, there remains no verifiable therapeutic targeted specifically to the virus. Here we present a highly effective small interfering RNA (siRNA) therapeutic against SARS-CoV-2 infection using a novel lipid nanoparticle (LNP) delivery system. Multiple siRNAs targeting highly conserved regions of the SARS-CoV-2 virus were screened, and three candidate siRNAs emerged that effectively inhibit the virus by greater than 90% either alone or in combination with one another. We simultaneously developed and screened two novel LNP formulations for the delivery of these candidate siRNA therapeutics to the lungs, an organ that incurs immense damage during SARS-CoV-2 infection. Encapsulation of siRNAs in these LNPs followed by in vivo injection demonstrated robust repression of virus in the lungs and a pronounced survival advantage to the treated mice. Our LNP-siRNA approaches are scalable and can be administered upon the first sign of SARS-CoV-2 infection in humans. We suggest that an siRNA-LNP therapeutic approach could prove highly useful in treating COVID-19 disease as an adjunctive therapy to current vaccine strategies.


Assuntos
Tratamento Farmacológico da COVID-19 , Sistemas de Liberação de Medicamentos/métodos , Lipídeos/química , Nanopartículas/química , RNA de Cadeia Dupla/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , SARS-CoV-2/genética , Administração Intravenosa , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/metabolismo , COVID-19/virologia , Feminino , Inativação Gênica , Células HEK293 , Humanos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , RNA de Cadeia Dupla/genética , RNA Viral/genética , Transcriptoma/efeitos dos fármacos , Resultado do Tratamento
2.
Phytother Res ; 30(2): 175-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26610378

RESUMO

Major depression is a common, recurrent, and chronic disease that negatively affects the quality of life and increases the risk of mortality. Several studies have demonstrated that curcumin, the yellow-pigmented substance of the turmeric, possesses antidepressant properties. The aim of this review is to meta-analytically assess the antidepressant effect of curcumin in patients with major depressive disorders. We extensively searched the literature until August 2015. The random-effect model was used to calculate the pooled standardized difference of means (SMD). Subgroup analyses were also performed to examine the effect of different study characteristics on the overall model. Six clinical trials met the inclusion criteria. Overall, curcumin administration showed a significantly higher reduction in depression symptoms [SMD = -0.34; 95% confidence interval (CI) = -0.56, -0.13; p = 0.002]. Subgroup analyses showed that curcumin had the highest effect when given to middle-aged patients (SMD = -0.36; 95% CI = -0.59; -0.13; p = 0.002), for longer duration of administration (SMD = -0.40; 95% CI = -0.64, -0.16; p = 0.001), and at higher doses (SMD = -0.36; 95% CI = -0.59, -0.13; p = 0.002). The administration of new formulation of curcumin (BCM-95) had non-significantly higher effect on depression as compared with the conventional curcumin-piperine formula. We conclude that there is supporting evidence that curcumin administration reduces depressive symptoms in patients with major depression.


Assuntos
Antidepressivos/uso terapêutico , Curcumina/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Adulto , Idoso , Curcuma/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Antiviral Res ; 222: 105815, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246206

RESUMO

There remains a striking overall mortality burden of COVID-19 worldwide. Given the waning effectiveness of current SARS-CoV-2 antivirals due to the rapid emergence of new variants of concern (VOC), we employed a direct-acting molecular therapy approach using gene silencing RNA interference (RNAi) technology. In this study, we developed and screened several ultra-conserved small-interfering RNAs (siRNAs) before selecting one potent siRNA candidate for pre-clinical in vivo testing. This non-immunostimulatory, anti-SARS-CoV-2 siRNA candidate maintains its antiviral activity against all tested SARS-CoV-2 VOC and works effectively as a single agent. For the first time, significant antiviral effects in both the lungs and nasal cavities of SARS-CoV-2 infected mice were observed when this siRNA candidate was delivered intranasally (IN) as a prophylactic agent with the aid of lipid nanoparticles (LNPs). Importantly, a pre-exposure prophylactic IN-delivered anti-SARS-CoV-2 siRNA antiviral that can ameliorate viral replication in the nasal cavity could potentially prevent aerosol spread of respiratory viruses. An IN delivery approach would allow for the development of a direct-acting nasal spray approach that could be self-administered prophylactically.


Assuntos
COVID-19 , Animais , Camundongos , RNA Interferente Pequeno/genética , COVID-19/prevenção & controle , Cavidade Nasal , SARS-CoV-2/genética , Antivirais/uso terapêutico , Pulmão
4.
J Microbiol Immunol Infect ; 56(3): 516-525, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934064

RESUMO

RNA interference (RNAi) is an emerging and promising therapy for a wide range of respiratory viral infections. This highly specific suppression can be achieved by the introduction of short-interfering RNA (siRNA) into mammalian systems, resulting in the effective reduction of viral load. Unfortunately, this has been hindered by the lack of a good delivery system, especially via the intranasal (IN) route. Here, we have developed an IN siRNA encapsulated lipid nanoparticle (LNP) in vivo delivery system that is highly efficient at targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory syncytial virus (RSV) lung infection in vivo. Importantly, IN siRNA delivery without the aid of LNPs abolishes anti-SARS-CoV-2 activity in vivo. Our approach using LNPs as the delivery vehicle overcomes the significant barriers seen with IN delivery of siRNA therapeutics and is a significant advancement in our ability to delivery siRNAs. The study presented here demonstrates an attractive alternate delivery strategy for the prophylactic treatment of both future and emerging respiratory viral diseases.


Assuntos
COVID-19 , Nanopartículas , Infecções por Vírus Respiratório Sincicial , Vírus , Animais , Humanos , RNA Interferente Pequeno/genética , SARS-CoV-2/genética , Administração Intranasal , COVID-19/prevenção & controle , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus/genética , Pulmão , Mamíferos/genética
5.
Biochim Biophys Acta Rev Cancer ; 1875(1): 188476, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186643

RESUMO

BACKGROUND: It is well-known that certain cancers are caused by viruses. However, viral oncogenesis is complex and only a small fraction of the infected people develop cancer. Indeed, a number of environmental factors can contribute to virally infected cells developing cancer hallmarks, promoting tumorigenesis. SCOPE OF REVIEW: The hit-and-run theory proposes that viruses facilitate the accumulation of mutations and promote genomic instability until the virus becomes dispensable for tumour maintenance. Indeed, several studies have reported viral genome, episome and/or oncogene loss in tumour cells without losing malignant phenotype. MAJOR CONCLUSIONS: The current evidence supports the clear contribution of certain viruses to develop cancers. Importantly, the evidence supporting the sustained maintenance of malignancy after the loss of viral "presence" is sufficient to support the hit-and-run hypothesis of viral cancer development. Long-term tracking of vaccination outcome over the decades will test this theory. GENERAL SIGNIFICANCE: If the hit-and-run theory is true, viruses might cause more cancers than previously thought and will have implications in the prevention of many cancers through implementing vaccination programs.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias/genética , Oncogenes/genética , Vírus Oncogênicos/genética , Progressão da Doença , Instabilidade Genômica/genética , Humanos , Mutação/genética , Neoplasias/patologia , Neoplasias/virologia , Vírus Oncogênicos/patogenicidade
6.
Am J Cancer Res ; 11(6): 3240-3251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249458

RESUMO

Human papilloma virus (HPV) is the main causative agent in cervical cancers. High-risk HPV cancers, including cervical cancer, are driven by major HPV oncogene, E6 and E7, which promote uncontrolled cell growth and genomic instability. We have previously shown that the presence of HPV E7 sensitizes cells to inhibition of aurora kinases (AURKs), which regulates the control of cell entry into and through mitosis. Such treatment is highly effective at eliminating early tumors and reducing large, late tumors. In addition, the presence of HPV oncogenes also sensitizes cells to inhibition of phosphoinositide 3-kinases (PI3Ks), a family of enzymes involved in cellular functions such as cell growth and proliferation. Using MLN8237 (Alisertib), an oral, selective inhibitor of AURKs, we investigated whether Alisertib treatment can improve tumor response when combined with either radiotherapy (RT) treatment or with a PI3K inhibitor, BYL719 (Alpelisib). Indeed, both RT and Alpelisib significantly improved Alisertib-mediated tumor killing, and the promising achieved results warrant further development of these combinations, and potentially translating them to the clinics.

7.
bioRxiv ; 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33907744

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans. Despite several emerging vaccines, there remains no verifiable therapeutic targeted specifically to the virus. Here we present a highly effective siRNA therapeutic against SARS-CoV-2 infection using a novel lipid nanoparticle delivery system. Multiple small-interfering RNAs (siRNAs) targeting highly conserved regions of the SARS-CoV-2 virus were screened and three candidate siRNAs emerged that effectively inhibit virus by greater than 90% either alone or in combination with one another. We simultaneously developed and screened two novel lipid nanoparticle formulations for the delivery of these candidate siRNA therapeutics to the lungs, an organ that incurs immense damage during SARS-CoV-2 infection. Encapsulation of siRNAs in these LNPs followed by in vivo injection demonstrated robust repression of virus in the lungs and a pronounced survival advantage to the treated mice. Our LNP-siRNA approaches are scalable and can be administered upon the first sign of SARS-CoV-2 infection in humans. We suggest that an siRNA-LNP therapeutic approach could prove highly useful in treating COVID-19 disease as an adjunctive therapy to current vaccine strategies.

8.
Am J Cancer Res ; 10(10): 3406-3414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163279

RESUMO

Human papillomavirus (HPV) is the main causative agent in cervical cancers. Recurrent cervical cancer is refractory to currently available treatments. Clearly there is an urgent unmet need to investigate new therapeutic strategies for both the newly diagnosed and recurrent patient populations. We have previously shown that the presence of HPV oncogenes sensitizes cells to inhibition of aurora kinases (AURKs), which induces mitotic delay eventually leading to apoptotic cell death. In this study, we explored whether a dual approach of combining an AURK inhibitor, MLN8237 (Alisertib), with a range of Bcl-2 family anti-apoptotic protein inhibitors would accelerate cancer cell killing. Enhanced and rapid cervical cancer cell killing was observed when Alisertib was combined with inhibitors of either Bcl-2 (Venetoclax), Bcl-XL (A1331852) or Mcl-1 (A1210477) proteins, likely by accelerating apoptosis during mitotic delay due to the loss of functional Bcl-2, Mcl-1, or Bcl-XL. This study presents a promising approach to treating aggressive cervical cancers and may apply to other HPV-related cancers.

9.
PLoS One ; 14(11): e0225774, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31774882

RESUMO

Human papilloma virus (HPV) is the main culprit in cervical cancers. Although the HPV vaccine is now available, the slow and gradual process for HPV cancers to form means little will change, even for vaccinated individuals. This warrants the development of new therapeutic strategies in both the newly diagnosed and recurrent patients. We have previously shown that Alisertib (MLN8237), an Aurora A kinase inhibitor, potently and selectively kills HPV-positive cervical cancer cells. However, Alisertib is known for its unfavorable side effects when administered systemically. A targeted delivery approach is therefore warranted. The topical delivery of drugs to the cervix for the treatment of cervical cancer is an underexplored area of research that has the potential to significantly improve therapeutic outcome. Here, we design a novel topical drug delivery system for localized delivery in the vaginal tract using intravaginal silicone rings loaded with Alisertib. We assessed the suitability of the drug for the application and delivery method and develop a high-performance liquid chromatography method, then show that the vaginal rings were effective at releasing Alisertib over an extended period of time. Furthermore, we showed that Alisertib-loaded vaginal rings did not induce overt inflammation in the mouse vaginal tract. Our work has major translational implications for the future development of vaginal ring devices for the topical treatment of cervical cancer.


Assuntos
Administração Intravaginal , Administração Tópica , Aurora Quinase A/antagonistas & inibidores , Azepinas/administração & dosagem , Pirimidinas/administração & dosagem , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Azepinas/farmacologia , Feminino , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Crit Rev Oncol Hematol ; 119: 59-65, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29065986

RESUMO

BACKGROUND: Many current anticancer chemotherapeutics suffer from significant side effects, which have led to the exploration of more targeted therapies. This resulted in the exploration of inhibitors of Aurora A kinase as a potential anti-cancer treatment. Alisertib (MLN8237) has proven to be a potent Aurora A kinase inhibitor that had the highest safety profile among its therapeutic family. Phase I/II/III clinical trials with Alisertib have been carried out and reported promising efficacy, yet serious side effects. This article attempts to assess the clinical effect of Alisertib administration in various cancer phenotypes while describing the reported side effects. METHODS: Alisertib clinical data were systematically retrieved from Medline, CINAHL, PubMed, and Cochrane Central Register of Controlled Trials and analyzed for quality, relevance, and originality in three stages prior to inclusion. RESULTS: Overall, seven studies met inclusion criteria and enrolled a total of 630 patients. The reported "potential" clinical effect of Alisertib in various tumours is promising as it improved time to disease progression, progression-free survival, and the duration of disease stability. The achieved improvement therefore rationalizes its further investigation as a novel anticancer therapy. However, the administration of the drug was associated with serious haematological disturbances in a relatively high percentage of patients. CONCLUSION: The evidence of the anti-tumour effect of Alisertib administration is compelling in various types of malignancies. The reported side effects were serious but manageable in many cases. Topical or more targeted routes of administration are suggested when possible to overcome off-target events with systematic administration of the drug.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Azepinas/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Pirimidinas/efeitos adversos , Azepinas/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA