Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Antimicrob Agents Chemother ; 67(4): e0143822, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975792

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the world's leading cause of mortality from a single bacterial pathogen. With increasing frequency, emergence of drug-resistant mycobacteria leads to failures of standard TB treatment regimens. Therefore, new anti-TB drugs are urgently required. BTZ-043 belongs to a novel class of nitrobenzothiazinones, which inhibit mycobacterial cell wall formation by covalent binding of an essential cysteine in the catalytic pocket of decaprenylphosphoryl-ß-d-ribose oxidase (DprE1). Thus, the compound blocks the formation of decaprenylphosphoryl-ß-d-arabinose, a precursor for the synthesis of arabinans. An excellent in vitro efficacy against M. tuberculosis has been demonstrated. Guinea pigs are an important small-animal model to study anti-TB drugs, as they are naturally susceptible to M. tuberculosis and develop human-like granulomas after infection. In the current study, dose-finding experiments were conducted to establish the appropriate oral dose of BTZ-043 for the guinea pig. Subsequently, it could be shown that the active compound was present at high concentrations in Mycobacterium bovis BCG-induced granulomas. To evaluate its therapeutic effect, guinea pigs were subcutaneously infected with virulent M. tuberculosis and treated with BTZ-043 for 4 weeks. BTZ-043-treated guinea pigs had reduced and less necrotic granulomas than vehicle-treated controls. In comparison to the vehicle controls a highly significant reduction of the bacterial burden was observed after BTZ-043 treatment at the site of infection and in the draining lymph node and spleen. Together, these findings indicate that BTZ-043 holds great promise as a new antimycobacterial drug.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Cobaias , Animais , Humanos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Antituberculosos/química , Oxirredutases
2.
PLoS Pathog ; 17(12): e1010107, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879119

RESUMO

In contrast to wild type bovine viral diarhea virus (BVDV) specific double deletion mutants are not able to establish persistent infection upon infection of a pregnant heifer. Our data shows that this finding results from a defect in transfer of the virus from the mother animal to the fetus. Pregnant heifers were inoculated with such a double deletion mutant or the parental wild type virus and slaughtered pairwise on days 6, 9, 10 and 13 post infection. Viral RNA was detected via qRT-PCR and RNAscope analyses in maternal tissues for both viruses from day 6 p.i. on. However, the double deletion mutant was not detected in placenta and was only found in samples from animals infected with the wild type virus. Similarly, high levels of wild type viral RNA were present in fetal tissues whereas the genome of the double deletion mutant was not detected supporting the hypothesis of a specific inhibition of mutant virus replication in the placenta. We compared the induction of gene expression upon infection of placenta derived cell lines with wild type and mutant virus via gene array analysis. Genes important for the innate immune response were strongly upregulated by the mutant virus compared to the wild type in caruncle epithelial cells that establish the cell layer on the maternal side at the maternal-fetal interface in the placenta. Also, trophoblasts which can be found on the fetal side of the interface showed significant induction of gene expression upon infection with the mutant virus although with lower complexity. Growth curves recorded in both cell lines revealed a general reduction of virus replication in caruncular epithelial cells compared to the trophoblasts. Compared to the wild type virus this effect was dramtic for the mutant virus that reached only a TCID50 of 1.0 at 72 hours post infection.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/transmissão , Vírus da Diarreia Viral Bovina/genética , Transmissão Vertical de Doenças Infecciosas , Placenta/imunologia , Placenta/virologia , Animais , Bovinos , Feminino , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Replicação Viral
3.
Parasitol Res ; 122(5): 1199-1211, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36944808

RESUMO

Small mammals are an important reservoir for causative agents of numerous infectious diseases, including zoonotic and vector-borne diseases. The occurrence of these pathogens represents a regional but permanent threat for humans and animals in general and might especially weaken military personnel and companion animals in abroad missions. In our study, small mammals collected in military camps in Afghanistan (Feyzabad, Mazar-e Sharif, and Kunduz) were investigated for the presence of apicomplexans using histopathology and molecular methods. For this purpose, well-established and newly developed real-time PCR assays were applied. A high prevalence was detected not only in house mice (Mus musculus), but also in shrews (Crocidura cf. suaveolens) and grey dwarf hamsters (Cricetulus migratorius). The molecular characterization based on the 18S rRNA gene revealed a close relationship to a cluster of Hepatozoon sp. detected in voles of the genus Microtus. Hepatozoon canis DNA was detected in one house mouse as well as in two Rhipicephalus ticks from a dog puppy. In addition, around 5% of the house mice were found to be infected with far related adeleorinids showing the highest sequence identity of 91.5% to Klossiella equi, the only published Klossiella sequence at present. For their better phylogenetic characterization, we conducted metagenomics by sequencing of two selected samples. The resulting 18S rRNA gene sequences have a length of about 2400 base pairs including an insertion of about 500 base pairs and are 100% identical to each other. Histopathology together with organ tropism and detection rates verified this sequence as of Klossiella muris. In conclusion, we documented naturally occurring protozoan stages and the additional taxonomic characterization of a well-known commensal in mice by applying a combination of different approaches. The study is of medical, social, and biological importance for ensuring human and animal health in military camps and also stresses the required awareness for the potential risk of zoonoses.


Assuntos
Eucoccidiida , Militares , Parasitos , Humanos , Animais , Cães , Camundongos , Afeganistão , Filogenia , Musaranhos
4.
PLoS Pathog ; 16(3): e1008445, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226043

RESUMO

Herpesviral encephalitis caused by Herpes Simplex Virus 1 (HSV-1) is one of the most devastating diseases in humans. Patients present with fever, mental status changes or seizures and when untreated, sequelae can be fatal. Herpes Simplex Encephalitis (HSE) is characterized by mainly unilateral necrotizing inflammation effacing the frontal and mesiotemporal lobes with rare involvement of the brainstem. HSV-1 is hypothesized to invade the CNS via the trigeminal or olfactory nerve, but viral tropism and the exact route of infection remain unclear. Several mouse models for HSE have been developed, but they mimic natural infection only inadequately. The porcine alphaherpesvirus Pseudorabies virus (PrV) is closely related to HSV-1 and Varicella Zoster Virus (VZV). While pigs can control productive infection, it is lethal in other susceptible animals associated with severe pruritus leading to automutilation. Here, we describe the first mutant PrV establishing productive infection in mice that the animals are able to control. After intranasal inoculation with a PrV mutant lacking tegument protein pUL21 and pUS3 kinase activity (PrV-ΔUL21/US3Δkin), nearly all mice survived despite extensive infection of the central nervous system. Neuroinvasion mainly occurred along the trigeminal pathway. Whereas trigeminal first and second order neurons and autonomic ganglia were positive early after intranasal infection, PrV-specific antigen was mainly detectable in the frontal, mesiotemporal and parietal lobes at later times, accompanied by a long lasting lymphohistiocytic meningoencephalitis. Despite this extensive infection, mice showed only mild to moderate clinical signs, developed alopecic skin lesions, or remained asymptomatic. Interestingly, most mice exhibited abnormalities in behavior and activity levels including slow movements, akinesia and stargazing. In summary, clinical signs, distribution of viral antigen and inflammatory pattern show striking analogies to human encephalitis caused by HSV-1 or VZV not observed in other animal models of disease.


Assuntos
Encefalite por Varicela Zoster , Gânglios Autônomos , Herpes Simples , Herpesvirus Humano 1 , Herpesvirus Suídeo 1 , Herpesvirus Humano 3 , Neurônios , Pseudorraiva , Animais , Modelos Animais de Doenças , Encefalite por Varicela Zoster/genética , Encefalite por Varicela Zoster/metabolismo , Feminino , Gânglios Autônomos/metabolismo , Gânglios Autônomos/patologia , Gânglios Autônomos/virologia , Herpes Simples/genética , Herpes Simples/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/metabolismo , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Pseudorraiva/genética , Pseudorraiva/metabolismo , Pseudorraiva/patologia , Suínos
5.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941788

RESUMO

Protein kinases homologous to the US3 gene product (pUS3) of herpes simplex virus (HSV) are conserved throughout the alphaherpesviruses but are absent from betaherpesviruses and gammaherpesviruses. pUS3 homologs are multifunctional and are involved in many processes, including modification of the cytoskeleton, inhibition of apoptosis, and immune evasion. pUS3 also plays a role in efficient nuclear egress of alphaherpesvirus nucleocapsids. In the absence of pUS3, primary enveloped virions accumulate in the perinuclear space (PNS) in large invaginations of the inner nuclear membrane (INM), pointing to a modulatory function for pUS3 during deenvelopment. The HSV and pseudorabies virus (PrV) US3 genes are transcribed into two mRNAs encoding two pUS3 isoforms, which have different aminoterminal sequences and abundances. To test whether the two isoforms in PrV serve different functions, we constructed mutant viruses expressing exclusively either the larger minor or the smaller major isoform, a mutant virus with decreased expression of the smaller isoform, or a mutant with impaired kinase function. Respective virus mutants were investigated in several cell lines. Our results show that absence of the larger pUS3 isoform has no detectable effect on viral replication in cell culture, while full expression of the smaller isoform and intact kinase activity is required for efficient nuclear egress. Absence of pUS3 resulted in only minor titer reduction in most cell lines tested but disclosed a more severe defect in Madin-Darby bovine kidney cells. However, accumulations of primary virions in the PNS do not account for the observed titer reduction in PrV.IMPORTANCE A plethora of substrates and functions have been assigned to the alphaherpesviral pUS3 kinase, including a role in nuclear egress. In PrV, two different pUS3 isoforms are expressed, which differ in size, abundance, and intracellular localization. Their respective role in replication is unknown, however. Here, we show that efficient nuclear egress of PrV requires the smaller isoform and intact kinase activity, whereas absence of the larger isoform has no significant effect on viral replication. Thus, there is a clear distinction in function between the two US3 gene products of PrV.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Herpesvirus Suídeo 1/enzimologia , Proteínas Serina-Treonina Quinases/química , Proteínas Virais/química , Animais , Apoptose , Bovinos , Chlorocebus aethiops , Citoesqueleto/metabolismo , Genoma Viral , Herpesvirus Suídeo 1/fisiologia , Rim/citologia , Mutação , Membrana Nuclear/metabolismo , Fenótipo , Isoformas de Proteínas , Coelhos , Células Vero , Montagem de Vírus
6.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33158901

RESUMO

Airborne disinfection of high-containment facilities before maintenance or between animal studies is crucial. Commercial spore carriers (CSC) coated with 106 spores of Geobacillus stearothermophilus are often used to assess the efficacy of disinfection. We used quantitative carrier testing (QCT) procedures to compare the sensitivity of CSC with that of surrogates for nonenveloped and enveloped viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mycobacteria, and spores, to an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP). We then used the QCT methodology to determine relevant process parameters to develop and validate effective disinfection protocols (≥4-log10 reduction) in various large and complex facilities. Our results demonstrate that aPAA-HP is a highly efficient procedure for airborne room disinfection. Relevant process parameters such as temperature and relative humidity can be wirelessly monitored. Furthermore, we found striking differences in inactivation efficacies against some of the tested microorganisms. Overall, we conclude that dry fogging a mixture of aPAA-HP is highly effective against a broad range of microorganisms as well as material compatible with relevant concentrations. Furthermore, CSC are artificial bioindicators with lower resistance and thus should not be used for validating airborne disinfection when microorganisms other than viruses have to be inactivated.IMPORTANCE Airborne disinfection is not only of crucial importance for the safe operation of laboratories and animal rooms where infectious agents are handled but also can be used in public health emergencies such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. We show that dry fogging an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP) is highly microbicidal, efficient, fast, robust, environmentally neutral, and a suitable airborne disinfection method. In addition, the low concentration of dispersed disinfectant, particularly for enveloped viral pathogens such as SARS-CoV-2, entails high material compatibility. For these reasons and due to the relative simplicity of the procedure, it is an ideal disinfection method for hospital wards, ambulances, public conveyances, and indoor community areas. Thus, we conclude that this method is an excellent choice for control of the current SARS-CoV-2 pandemic.


Assuntos
COVID-19/prevenção & controle , Desinfetantes/farmacologia , Desinfecção/métodos , Mycobacterium/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Esporos Bacterianos/efeitos dos fármacos , Aerossóis , Linhagem Celular , Descontaminação/métodos , Geobacillus stearothermophilus/efeitos dos fármacos , Peróxido de Hidrogênio , Tamanho da Partícula , Ácido Peracético , Vapor
7.
Vet Pathol ; 57(4): 550-553, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452273

RESUMO

Infection of small ruminants with peste des petits ruminants virus (PPRV) and goatpox virus (GTPV) are endemic and can have devastating economic consequences in Asia and Africa. Co-infection with these viruses have recently been reported in goats and sheep in Nigeria. In this study, we evaluated samples from the lips of a red Sokoto goat, and describe co-infection of keratinocytes with PPRV and GTPV using histopathology and transmission electron microscopy. Eosinophilic cytoplasmic inclusion bodies were identified histologically, and ultrastructural analysis revealed numerous large cytoplasmic viral factories containing poxvirus particles and varying sizes of smaller cytoplasmic inclusions composed of PPRV nucleocapsids. These histopathological and ultrastructural findings show concurrent infection with the 2 viruses for the first time as well as the detection of PPRV particles in epithelial cells of the mucocutaneous junction of the lip.


Assuntos
Capripoxvirus/isolamento & purificação , Coinfecção/veterinária , Doenças das Cabras/virologia , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Animais , Cabras/virologia , Histocitoquímica/veterinária , Queratinócitos/virologia , Lábio/virologia , Microscopia Eletrônica de Transmissão/veterinária , Nigéria , Dermatopatias/virologia
8.
J Infect Dis ; 218(7): 1037-1044, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29373675

RESUMO

The characteristics and risk factors of pigeon paramyxovirus type 1 (PPMV-1) infection in humans are poorly known. We performed virological, pathological, and epidemiological analyses of a Dutch case, and compared the results with those of a US case. Both infections occurred in transplant patients under immunosuppressive therapy and caused fatal respiratory failure. Both virus isolates clustered with PPMV-1, which has pigeons and doves as reservoir. Experimentally inoculated pigeons became infected and transmitted the virus to naive pigeons. Both patients were likely infected by contact with infected pigeons or doves. Given the large populations of feral pigeons with PPMV-1 infection in cities, increasing urbanization, and a higher proportion of immunocompromised individuals, the risk of severe human PPMV-1 infections may increase. We recommend testing for avian paramyxovirus type 1, including PPMV-1, in respiratory disease cases where common respiratory pathogens cannot be identified.


Assuntos
Doenças das Aves/virologia , Galinhas/virologia , Columbidae/virologia , Doença de Newcastle/diagnóstico , Vírus da Doença de Newcastle/isolamento & purificação , Pneumonia/diagnóstico , Síndrome do Desconforto Respiratório/diagnóstico , Animais , Evolução Fatal , Feminino , Humanos , Hospedeiro Imunocomprometido , Metagenômica , Pessoa de Meia-Idade , Doença de Newcastle/patologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/patogenicidade , Filogenia , Pneumonia/patologia , Pneumonia/virologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Fatores de Risco , Virulência , Zoonoses
9.
N Engl J Med ; 373(2): 154-62, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26154788

RESUMO

Between 2011 and 2013, three breeders of variegated squirrels (Sciurus variegatoides) had encephalitis with similar clinical signs and died 2 to 4 months after onset of the clinical symptoms. With the use of a metagenomic approach that incorporated next-generation sequencing and real-time reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR), the presence of a previously unknown bornavirus was detected in a contact squirrel and in brain samples from the three patients. Phylogenetic analyses showed that this virus, tentatively named variegated squirrel 1 bornavirus (VSBV-1), forms a lineage separate from that of the known bornavirus species. (Funded by the Federal Ministry of Food and Agriculture [Germany] and others.).


Assuntos
Bornaviridae/genética , Encéfalo/patologia , Encefalite Viral/virologia , Infecções por Mononegavirales/virologia , Sciuridae/virologia , Idoso , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/líquido cefalorraquidiano , Bornaviridae/classificação , Bornaviridae/isolamento & purificação , Encefalite Viral/patologia , Evolução Fatal , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Infecções por Mononegavirales/patologia , Infecções por Mononegavirales/transmissão , Filogenia , RNA Viral , Análise de Sequência de DNA , Zoonoses/transmissão , Zoonoses/virologia
10.
Emerg Infect Dis ; 23(4): 633-636, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28055819

RESUMO

In November 2016, an influenza A(H5N8) outbreak caused deaths of wild birds and domestic poultry in Germany. Clade 2.3.4.4 virus was closely related to viruses detected at the Russia-Mongolia border in 2016 but had new polymerase acidic and nucleoprotein segments. These new strains may be more efficiently transmitted to and shed by birds.


Assuntos
Animais Selvagens , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária/virologia , Vírus Reordenados/genética , Animais , Animais Domésticos , Aves , Alemanha/epidemiologia , Influenza Aviária/epidemiologia
11.
J Virol ; 90(1): 400-11, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26491158

RESUMO

UNLABELLED: In 1999, after circulation for a few months in poultry in Italy, low-pathogenic (LP) avian influenza (AI) H7N1 virus mutated into a highly pathogenic (HP) form by acquisition of a unique multibasic cleavage site (mCS), PEIPKGSRVRR*GLF (asterisk indicates the cleavage site), in the hemagglutinin (HA) and additional alterations with hitherto unknown biological function. To elucidate these virulence-determining alterations, recombinant H7N1 viruses carrying specific mutations in the HA of LPAI A/chicken/Italy/473/1999 virus (Lp) and HPAI A/chicken/Italy/445/1999 virus (Hp) were generated. Hp with a monobasic CS or carrying the HA of Lp induced only mild or no disease in chickens, thus resembling Lp. Conversely, Lp with the HA of Hp was as virulent and transmissible as Hp. While Lp with a multibasic cleavage site (Lp_CS445) was less virulent than Hp, full virulence was exhibited when HA2 was replaced by that of Hp. In HA2, three amino acid differences consistently detected between LP and HP H7N1 viruses were successively introduced into Lp_CS445. Q450L in the HA2 stem domain increased virulence and transmission but was detrimental to replication in cell culture, probably due to low-pH activation of HA. A436T and/or K536R restored viral replication in vitro and in vivo. Viruses possessing A436T and K536R were observed early in the HPAI outbreak but were later superseded by viruses carrying all three mutations. Together, besides the mCS, stepwise mutations in HA2 increased the fitness of the Italian H7N1 virus in vivo. The shift toward higher virulence in the field was most likely gradual with rapid optimization. IMPORTANCE: In 1999, after 9 months of circulation of low-pathogenic (LP) avian influenza virus (AIV), a devastating highly pathogenic (HP) H7N1 AIV emerged in poultry, marking the largest epidemic of AIV reported in a Western country. The HPAIV possessed a unique multibasic cleavage site (mCS) complying with the minimum motif for HPAIV. The main finding in this report is the identification of three mutations in the HA2 domain that are required for replication and stability, as well as for virulence, transmission, and tropism of H7N1 in chickens. In addition to the mCS, Q450L was required for full virulence and transmissibility of the virus. Nonetheless, it was detrimental to virus replication and required A436T and/or K536R to restore replication, systemic spread, and stability. These results are important for better understanding of the evolution of highly pathogenic avian influenza viruses from low-pathogenic precursors.


Assuntos
Hemaglutininas Virais/genética , Hemaglutininas Virais/metabolismo , Vírus da Influenza A Subtipo H7N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H7N1/genética , Influenza Aviária/patologia , Influenza Aviária/virologia , Mutação de Sentido Incorreto , Animais , Galinhas , Itália , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Recombinação Genética , Genética Reversa , Virulência
12.
Arch Virol ; 162(10): 3119-3129, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28702933

RESUMO

In late 2011, Schmallenberg virus (SBV), a novel, arthropod-borne, teratogenic orthobunyavirus, emerged near the German/Dutch border and thereafter spread rapidly throughout the continent thereby causing great economic losses in European livestock. SBV mainly infects ruminants and closely related viruses such as Sabo virus (SABOV), Simbu virus (SIMBUV) and Sathuperi virus (SATV) have been isolated from their insect-vectors or putative ruminant hosts. However, information about their pathogenesis and in vivo studies with SABOV, SIMBUV, and SATV are scarce. As experimental infections of ruminants are comprehensive and time-consuming, an SBV small animal model was assessed regarding its suitability for studying Simbu viruses. Adult type I interferon deficient mice (IFNAR-/-) were subcutaneously infected with the Simbu serogroup members SABOV, SIMV and SATV, respectively, and compared to SBV-infected mice. All animals were clinically, virologically, serologically, and pathologically examined. The clinical signs were mainly characterised by the loss of body weight and by paralysis. In blood, and samples from the spleen and brain, high loads of viral genome were detected using newly developed real-time PCR assays. The most common histologic lesions included meningo-encephalomyelitis, perivascular cuffing of lymphocytes and macrophages, neuronal degeneration and gliosis. These lesions have also been described in foetuses after transplacental infection with SBV. In-situ hybridisation signals were widely distributed in multiple neurons of the brain and spinal cord in all examined, inoculated mice. In conclusion, IFNAR-/- mice are a suitable animal model for pathogenesis studies of a broad range of Simbu serogroup viruses since all the viruses examined displayed a common pattern of viral organ and tissue distribution in this mouse model.


Assuntos
Infecções por Bunyaviridae/imunologia , Receptor de Interferon alfa e beta/metabolismo , Vírus Simbu , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Interferon alfa e beta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
J Gen Virol ; 97(12): 3193-3204, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27902339

RESUMO

Highly pathogenic H5N1 avian influenza virus (A/H5N1) devastated the poultry industry and continues to pose a pandemic threat. Studying the progressive genetic changes in A/H5N1 after long-term circulation in poultry may help us to better understand A/H5N1 biology in birds. A/H5N1 clade 2.2.1.1 antigenic drift viruses have been isolated from vaccinated commercial poultry in Egypt. They exhibit a peculiar stepwise accumulation of glycosylation sites (GS) in the haemagglutinin (HA) with viruses carrying, beyond the conserved 5 GS, additional GS at amino acid residues 72, 154, 236 and 273 resulting in 6, 7, 8 or 9 GS in the HA. Available information about the impact of glycosylation on virus fitness and pathobiology is mostly derived from mammalian models. Here, we generated recombinant viruses imitating the progressive acquisition of GS in HA and investigated their biological relevance in vitro and in vivo. Our in vitro results indicated that the accumulation of GS correlated with increased glycosylation, increased virus replication, neuraminidase activity, cell-to-cell spread and thermostability, however, strikingly, without significant impact on virus escape from neutralizing antibodies. In vivo, glycosylation modulated virus virulence, tissue tropism, replication and chicken-to-chicken transmission. Predominance in the field was towards viruses with hyperglycosylated HA. Together, progressive glycosylation of the HA may foster persistence of A/H5N1 by increasing replication, stability and bird-to-bird transmission without significant impact on antigenic drift.


Assuntos
Variação Antigênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/transmissão , Doenças das Aves Domésticas/virologia , Replicação Viral , Motivos de Aminoácidos , Animais , Galinhas , Egito , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/virologia , Filogenia , Virulência
14.
Exp Parasitol ; 163: 46-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26836446

RESUMO

Toxoplasma gondii infects animals habiting terrestrial and aquatic environments. Its oocysts and tissue cysts are important for the horizontal transmission of this parasite. The oocyst and tissue cyst walls are crucial for the ability of the parasite to persist in the environment or in animal tissues, respectively. However, the composition of these walls is not well understood. We report the generation of monoclonal antibodies directed against wall components using mice immunized with oocyst antigens of T. gondii. One monoclonal antibody (mAb) G1/19 reacted solely with T. gondii sporozoites. The respective antigen had a relative molecular weight (Mr) of 30 kDa. MAb G1/19 failed to react with sporozoites of any other coccidian parasite species tested (Hammondia hammondi, Hammondia heydorni, Cystoisospora felis, Eimeria bovis, Sarcocystis sp.). Another mAb, designated K8/15-15, recognized antigens in sporocyst walls of the parasite and in the walls of in vivo or in vitro produced tissue cysts, as demonstrated by immunofluorescence and immunoblot assays. Antigens of 80 to a high molecular weight protein of about 350 kDa Mr were recognized by this antibody using antigen extracts from sporocysts, and from in vitro or in vivo generated tissue cysts of the parasite. Tissue cyst and sporocyst walls of H. hammondi and H. heydorni, and tissue cysts of Neospora caninum were also recognized by mAb K8/15-15. Sporocyst walls of C. felis also reacted to this mAb. The cyst walls of Sarcocystis sp. and Besnoitia besnoiti were not recognized by mAb K8/15-15. Reactivity by a single mAb against T. gondii antigens in tissue cysts and sporocysts had not been reported previously. MAb K8/15-15 may be a practical tool for the identification of both cysts and sporocysts of the parasite, and may also be potentially employed in proteomic studies on the identification of new components of the cyst and sporocyst walls of T. gondii.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Protozoários/imunologia , Imunoglobulina G/imunologia , Toxoplasma/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Antígenos de Protozoários/administração & dosagem , Gatos , Bovinos , Coccídios/classificação , Coccídios/imunologia , Cães , Imunofluorescência , Hibridomas , Imunização Secundária , Injeções Intravenosas , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oocistos/imunologia , Ovinos
16.
J Virol ; 88(16): 9153-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899194

RESUMO

UNLABELLED: Human influenza cases caused by a novel avian H7N9 virus in China emphasize the zoonotic potential of that subtype. We compared the infectivity and pathogenicity of the novel H7N9 virus with those of a recent European avian H7N7 strain in chickens, pigeons, and ferrets. Neither virus induced signs of disease despite substantial replication in inoculated chickens and rapid transmission to contact chickens. Evidence of the replication of both viruses in pigeons, albeit at lower levels of RNA excretion, was also detected. No clear-cut differences between the two H7 isolates emerged regarding replication and antibody development in avian hosts. In ferrets, in contrast, greater replication of the avian H7N9 virus than of the H7N7 strain was observed with significant differences in viral presence, e.g., in nasal wash, lung, and cerebellum samples. Importantly, both viruses showed the potential to spread to the mammal brain. We conclude that efficient asymptomatic viral replication and shedding, as shown in chickens, facilitate the spread of H7 viruses that may harbor zoonotic potential. Biosafety measures are required for the handling of poultry infected with avian influenza viruses of the H7 subtype, independently of their pathogenicity for gallinaceous poultry. IMPORTANCE: This study is important to the field since it provides data about the behavior of the novel H7N9 avian influenza virus in chickens, pigeons, and ferrets in comparison with that of a recent low-pathogenicity H7N7 strain isolated from poultry. We clearly show that chickens, but not pigeons, are highly permissive hosts of both H7 viruses, allowing high-titer replication and virus shedding without any relevant clinical signs. In the ferret model, the potential of both viruses to infect mammals could be demonstrated, including infection of the brain. However, the replication efficiency of the H7N9 virus in ferrets was higher than that of the H7N7 strain. In conclusion, valuable data for the risk analysis of low-pathogenicity avian influenza viruses of the H7 subtype are provided that could also be used for the risk assessment of zoonotic potentials and necessary biosafety measures.


Assuntos
Galinhas/virologia , Columbidae/virologia , Furões/virologia , Vírus da Influenza A Subtipo H7N7/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Virulência/genética , Adulto , Animais , Aves/virologia , China , Feminino , Humanos , Influenza Aviária/genética , Influenza Aviária/virologia , Influenza Humana/genética , Influenza Humana/virologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/virologia , RNA Viral/genética , Replicação Viral/genética , Eliminação de Partículas Virais/genética
17.
Proc Natl Acad Sci U S A ; 109(7): 2579-84, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308331

RESUMO

High-pathogenic avian influenza viruses (HPAIVs) evolve from low-pathogenic precursors specifying the HA serotypes H5 or H7 by acquisition of a polybasic HA cleavage site. As the reason for this serotype restriction has remained unclear, we aimed to distinguish between compatibility of a polybasic cleavage site with H5/H7 HA only and unique predisposition of these two serotypes for insertion mutations. To this end, we introduced a polybasic cleavage site into the HA of several low-pathogenic avian strains with serotypes H1, H2, H3, H4, H6, H8, H10, H11, H14, or H15, and rescued HA reassortants after cotransfection with the genes from either a low-pathogenic H9N2 or high-pathogenic H5N1 strain. Oculonasal inoculation with those reassortants resulted in varying pathogenicity in chicken. Recombinants containing the engineered H2, H4, H8, or H14 in the HPAIV background were lethal and exhibited i.v. pathogenicity indices of 2.79, 2.37, 2.85, and 2.61, respectively, equivalent to naturally occurring H5 or H7 HPAIV. Moreover, the H2, H4, and H8 reassortants were transmitted to some contact chickens. The H2 reassortant gained two mutations in the M2 proton channel gate region, which is affected in some HPAIVs of various origins. Taken together, in the presence of a polybasic HA cleavage site, non-H5/H7 HA can support a highly pathogenic phenotype in the appropriate viral background, indicating requirement for further adaptation. Therefore, the restriction of natural HPAIV to serotypes H5 and H7 is likely a result of their unique predisposition for acquisition of a polybasic HA cleavage site.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/fisiologia , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Animais , Aves , Vírus da Influenza A/patogenicidade
18.
J Gen Virol ; 95(Pt 4): 948-959, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24431235

RESUMO

Pigs can be severely harmed by influenza, and represent important reservoir hosts, in which new human pathogens such as the recent pandemic swine-origin H1N1 influenza A virus can arise by mutation and reassortment of genome segments. To obtain novel, safe influenza vaccines for pigs, and to investigate the antigen-specific immune response, we modified an established live-virus vaccine against Aujeszky's disease of swine, pseudorabies virus (PrV) strain Bartha (PrV-Ba), to serve as vector for the expression of haemagglutinin (HA) of swine-origin H1N1 virus. To facilitate transgene insertion, the genome of PrV-Ba was cloned as a bacterial artificial chromosome. HA expression occurred under control of the human or murine cytomegalovirus immediate early promoters (P-HCMV, P-MCMV), but could be substantially enhanced by synthetic introns and adaptation of the codon usage to that of PrV. However, despite abundant expression, the heterologous glycoprotein was not detectably incorporated into mature PrV particles. Replication of HA-expressing PrV in cell culture was only slightly affected compared to that of the parental virus strain. A single immunization of pigs with the PrV vector expressing the codon-optimized HA gene under control of P-MCMV induced high levels of HA-specific antibodies. The vaccinated animals were protected from clinical signs after challenge with a related swine-origin H1N1 influenza A virus, and challenge virus shedding was significantly reduced.


Assuntos
Portadores de Fármacos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Herpesvirus Suídeo 1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Doenças dos Suínos/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Infecções por Orthomyxoviridae/imunologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Eliminação de Partículas Virais
19.
J Gen Virol ; 95(Pt 8): 1647-1653, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24828330

RESUMO

Bokeloh bat lyssavirus (BBLV), a novel lyssavirus, was isolated from a Natterer's bat (Myotis nattererii), a chiropteran species with a widespread and abundant distribution across Europe. As a novel lyssavirus, the risks of BBLV to animal and human health are unknown and as such characterization both in vitro and in vivo was required to assess pathogenicity and vaccine protection. Full genome sequence analysis and antigenic cartography demonstrated that the German BBLV isolates are most closely related to European bat lyssavirus type 2 (EBLV-2) and Khujand virus and can be characterized within phylogroup I. In vivo characterization demonstrated that BBLV was pathogenic in mice when inoculated peripherally causing clinical signs typical for rabies encephalitis, with higher pathogenicity observed in juvenile mice. A limited vaccination-challenge experiment in mice was conducted and suggested that current vaccines would afford some protection against BBLV although further studies are warranted to determine a serological cut-off for protection.


Assuntos
Quirópteros/virologia , Genoma Viral , Lyssavirus/genética , Lyssavirus/imunologia , RNA Viral/genética , Animais , Antígenos Virais/genética , Análise por Conglomerados , Modelos Animais de Doenças , Encefalite Viral/patologia , Encefalite Viral/virologia , Feminino , Lyssavirus/isolamento & purificação , Lyssavirus/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Filogeografia , Raiva/patologia , Raiva/virologia , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/imunologia
20.
Arch Virol ; 159(3): 509-18, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24081824

RESUMO

We investigated unusual crow mortality in Bangladesh during January-February 2011 at two sites. Crows of two species, Corvus splendens and C. macrorhynchos, were found sick and dead during the outbreaks. In selected crow roosts, morbidity was ~1 % and mortality was ~4 % during the investigation. Highly pathogenic avian influenza virus H5N1 clade 2.3.2.1 was isolated from dead crows. All isolates were closely related to A/duck/India/02CA10/2011 (H5N1) with 99.8 % and A/crow/Bangladesh/11rs1984-15/2011 (H5N1) virus with 99 % nucleotide sequence identity in their HA genes. The phylogenetic cluster of Bangladesh viruses suggested a common ancestor with viruses found in poultry from India, Myanmar and Nepal. Histopathological changes and immunohistochemistry staining in brain, pancreas, liver, heart, kidney, bursa of Fabricius, rectum, and cloaca were consistent with influenza virus infection. Through our limited investigation in domesticated birds near the crow roosts, we did not identify any samples that tested positive for influenza virus A/H5N1. However, environmental samples collected from live-bird markets near an outbreak site during the month of the outbreaks tested very weakly positive for influenza virus A/H5N1 in clade 2.3.2.1-specific rRT-PCR. Continuation of surveillance in wild and domestic birds may identify evolution of new avian influenza virus and associated public-health risks.


Assuntos
Surtos de Doenças , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , Bangladesh/epidemiologia , Análise por Conglomerados , Corvos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA