Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Strength Cond Res ; 36(9): 2410-2416, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306591

RESUMO

ABSTRACT: Teixeira, EL, Painelli, VdS, Schoenfeld, BJ, Silva-Batista, C, Longo, AR, Aihara, AY, Cardoso, FN, Peres, BdA, and Tricoli, V. Perceptual and neuromuscular responses adapt similarly between high-load resistance training and low-load resistance training with blood flow restriction. J Strength Cond Res 36(9): 2410-2416, 2022-This study compared the effects of 8 weeks of low-load resistance training with blood flow restriction (LL-BFR) and high-load resistance training (HL-RT) on perceptual responses (rating of perceived exertion [RPE] and pain), quadriceps cross-sectional area (QCSA), and muscle strength (1 repetition maximum [RM]). Sixteen physically active men trained twice per week, for 8 weeks. One leg performed LL-BFR (3 sets of 15 repetitions, 20% 1RM), whereas the contralateral leg performed HL-RT (3 sets of 8 repetitions, 70% 1RM). Rating of perceived exertion and pain were evaluated immediately after the first and last training sessions, whereas QCSA and 1RM were assessed at baseline and after training. Rating of perceived exertion was significantly lower (6.8 ± 1.1 vs. 8.1 ± 0.8, p = 0.001) and pain significantly higher (7.1 ± 1.2 vs. 5.8 ± 1.8, p = 0.02) for LL-BFR than that for HL-RT before training. Significant reductions in RPE and pain were shown for both protocols after training (both p < 0.0001), although no between-protocol differences were shown in absolute changes ( p = 0.10 and p = 0.48, respectively). Both LL-BFR and HL-RT were similarly effective in increasing QCSA (7.0 ± 3.8% and 6.3 ± 4.1%, respectively; both p < 0.0001) and 1RM (6.9 ± 4.1% and 13.7 ± 5.9%, respectively; both P < 0.0001), although absolute changes for 1RM in HL-RT were greater than LL-BFR ( p = 0.001). In conclusion, LL-BFR produces lower RPE values and a higher pain perception than HL-RT. However, consistent application of these approaches result in chronic adaptations so that there are no differences in perceptual responses over the course of time. In addition, muscle strength is optimized with HL-RT despite similar increases in muscle hypertrophy between conditions.


Assuntos
Treinamento Resistido , Humanos , Masculino , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Dor , Músculo Quadríceps/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Treinamento Resistido/métodos
2.
J Strength Cond Res ; 36(2): 346-351, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31895290

RESUMO

ABSTRACT: Lasevicius, T, Schoenfeld, BJ, Silva-Batista, C, Barros, TdS, Aihara, AY, Brendon, H, Longo, AR, Tricoli, V, Peres, BdA, and Teixeira, EL. Muscle failure promotes greater muscle hypertrophy in low-load but not in high-load resistance training. J Strength Cond Res 36(2): 346-351, 2022-The purpose of this study was to investigate the effects of an 8-week resistance training program at low and high loads performed with and without achieving muscle failure on muscle strength and hypertrophy. Twenty-five untrained men participated in the 8-week study. Each lower limb was allocated to 1 of 4 unilateral knee extension protocols: repetitions to failure with low load (LL-RF; ∼34.4 repetitions); repetitions to failure with high load (HL-RF; ∼12.4 repetitions); repetitions not to failure with low load (LL-RNF; ∼19.6 repetitions); and repetitions not to failure with high load (HL-RNF; ∼6.7 repetitions). All conditions performed 3 sets with total training volume equated between conditions. The HL-RF and HL-RNF protocols used a load corresponding to 80% 1 repetition maximum (RM), while LL-RF and LL-RNF trained at 30% 1RM. Muscle strength (1RM) and quadriceps cross-sectional area (CSA) were assessed before and after intervention. Results showed that 1RM changes were significantly higher for HL-RF (33.8%, effect size [ES]: 1.24) and HL-RNF (33.4%, ES: 1.25) in the post-test when compared with the LL-RF and LL-RNF protocols (17.7%, ES: 0.82 and 15.8%, ES: 0.89, respectively). Quadriceps CSA increased significantly for HL-RF (8.1%, ES: 0.57), HL-RNF (7.7%, ES: 0.60), and LL-RF (7.8%, ES: 0.45), whereas no significant changes were observed in the LL-RNF (2.8%, ES: 0.15). We conclude that when training with low loads, training with a high level of effort seems to have greater importance than total training volume in the accretion of muscle mass, whereas for high load training, muscle failure does not promote any additional benefits. Consistent with previous research, muscle strength gains are superior when using heavier loads.


Assuntos
Treinamento Resistido , Humanos , Hipertrofia , Masculino , Força Muscular , Músculo Esquelético , Músculo Quadríceps
3.
J Strength Cond Res ; 36(6): 1554-1559, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35622106

RESUMO

ABSTRACT: Longo, AR, Silva-Batista, C, Pedroso, K, de Salles Painelli, V, Lasevicius, T, Schoenfeld, BJ, Aihara, AY, de Almeida Peres, B, Tricoli, V, and Teixeira, EL. Volume load rather than resting interval influences muscle hypertrophy during high-intensity resistance training. J Strength Cond Res 36(6): 1554-1559, 2022-Interset rest interval has been proposed as an important variable for inducing muscle mass and strength increases during resistance training. However, its influence remains unclear, especially when protocols with differing intervals have equalized volume. We aimed to compare the effects of long (LI) vs. short rest interval (SI) on muscle strength (one repetition maximum [1RM]) and quadriceps cross-sectional area (QCSA), with or without equalized volume load (VL). Twenty-eight subjects trained twice a week for 10 weeks. Each subject's leg was allocated to 1 of 4 unilateral knee extension protocols: LI, SI, SI with VL -matched by LI (VLI-SI), and LI with VL-matched by SI (VSI-LI). A 3-minute rest interval was afforded in LI and VSI-LI protocols, while SI and VLI-SI employed a 1-minute interval. All subjects trained with a load corresponding to 80% 1RM. One repetition maximum and QCSA were measured before and after training. All protocols significantly increased 1RM values in post-training (p < 0.0001; LI: 27.6%, effect size [ES] = 0.90; VLI-SI: 31.1%, ES = 1.00; SI: 26.5%, ES = 1.11; and VSI-LI: 31.2%, ES = 1.28), with no significant differences between protocols. Quadriceps cross-sectional area increased significantly for all protocols in post-training (p < 0.0001). However, absolute changes in QCSA were significantly greater in LI and VLI-SI (13.1%, ES: 0.66 and 12.9%, ES: 0.63) than SI and VSI-LI (6.8%, ES: 0.38 and 6.6%, ES: 0.37) (both comparisons, p < 0.05). These data suggest that maintenance of high loads is more important for strength increases, while a greater VL plays a primary role for hypertrophy, regardless of interset rest interval.


Assuntos
Músculo Quadríceps , Treinamento Resistido , Humanos , Hipertrofia/fisiopatologia , Força Muscular/fisiologia , Músculo Quadríceps/patologia , Treinamento Resistido/efeitos adversos , Treinamento Resistido/métodos
4.
J Strength Cond Res ; 35(5): 1194-1200, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900254

RESUMO

ABSTRACT: Teixeira, EL, Ugrinowitsch, C, de Salles Painelli, V, Silva-Batista, C, Aihara, AY, Cardoso, FN, Roschel, H, and Tricoli, V. Blood flow restriction does not promote additional effects on muscle adaptations when combined with high-load resistance training regardless of blood flow restriction protocol. J Strength Cond Res 35(5): 1194-1200, 2021-The aim of this study was to investigate, during high-load resistance training (HL-RT), the effect of blood flow restriction (BFR) applied during rest intervals (BFR-I) and muscle contractions (BFR-C) compared with HL-RT alone (no BFR), on maximum voluntary isometric contraction (MVIC), maximum dynamic strength (one repetition maximum [1RM]), quadriceps cross-sectional area (QCSA), blood lactate concentration ([La]), and root mean square of the surface electromyography (RMS-EMG) responses. Forty-nine healthy and untrained men (25 ± 6.2 years, 178.1 ± 5.3 cm and 78.8 ± 11.6 kg) trained twice per week, for 8 weeks. One leg of each subject performed HL-RT without BFR (HL-RT), whereas the contralateral leg was randomly allocated to 1 of 2 unilateral knee extension protocols: BFR-I or BFR-C (for all protocols, 3 × 8 repetitions, 70% 1RM). Maximum voluntary isometric contraction, 1RM, QCSA, and acute changes in [La] and RMS-EMG were assessed before and after training. The measurement of [La] and RMS-EMG was performed during the control sessions with the same relative load obtained after the 1RM test, before and after training. Similar increases in MVIC, 1RM, and QCSA were demonstrated among all conditions, with no significant difference between them. [La] increased for all protocols in pre-training and post-training, but it was higher for BFR-I compared with the remaining protocols. Increases in RMS-EMG occurred for all protocols in pre-training and post-training, with no significant difference between them. In conclusion, despite of a greater metabolic stress, BFR inclusion to HL-RT during rest intervals or muscle contraction did not promote any additive effect on muscle strength and hypertrophy.


Assuntos
Treinamento Resistido , Humanos , Contração Isométrica , Masculino , Força Muscular , Músculo Esquelético , Músculo Quadríceps , Fluxo Sanguíneo Regional
5.
J Strength Cond Res ; 34(5): 1254-1263, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32149887

RESUMO

Brandão, L, de Salles Painelli, V, Lasevicius, T, Silva-Batista, C, Brendon, H, Schoenfeld, BJ, Aihara, AY, Cardoso, FN, de Almeida Peres, B, and Teixeira, EL. Varying the order of combinations of single- and multi-joint exercises differentially affects resistance training adaptations. J Strength Cond Res 34(5): 1254-1263, 2020-Our study aimed to compare the effects of multi-joint (MJ) and single-joint (SJ) exercises, either isolated or in combination, and in different orders, on cross-sectional area (CSA) of the pectoralis major (PM) and different heads of the triceps brachii (TB), as well as on the one-repetition maximum (1-RM) in the bench press and lying barbell triceps press. Forty-three young men were randomly assigned to one of 4 possible RT protocols: barbell bench press plus lying barbell triceps press (MJ + SJ, n = 12); lying barbell triceps press plus barbell bench press (SJ + MJ, n = 10); barbell bench press (MJ, n = 10); or lying barbell triceps press (SJ, n = 11). Results showed significant within-group increases in 1-RM bench press for MJ, MJ + SJ, and SJ + MJ but not for SJ. Conversely, significantly greater within-group increases in elbow extension 1-RM were noted for SJ, MJ + SJ, and SJ + MJ but not for MJ. Significantly greater increases in PM CSA were observed for MJ, MJ + SJ, and SJ + MJ compared with SJ. Significant increases in TB CSA were noted for SJ, MJ + SJ, and SJ + MJ, but not for MJ, without observed between-group differences. Individual analysis of TB heads showed significantly greater CSA increases in the lateral head for MJ, MJ + SJ, and SJ + MJ compared with SJ. Alternatively, significantly greater increases in the long head were observed for SJ, MJ + SJ, and SJ + MJ compared with MJ. CSA increases for the medial head were statistically similar between conditions. Our findings indicate that muscular adaptations are differentially affected by performance of MJ and SJ exercises.


Assuntos
Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Adaptação Fisiológica , Adolescente , Adulto , Braço , Articulação do Cotovelo/fisiologia , Humanos , Masculino , Músculos Peitorais/fisiologia , Adulto Jovem
6.
Scand J Med Sci Sports ; 29(11): 1713-1726, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31281989

RESUMO

We sought to determine whether early increases in cross-sectional area (CSA) of different muscles composing the quadriceps with low-load resistance training with blood flow restriction (LL-BFR) were mainly driven by muscle hypertrophy or by edema-induced swelling. We also compared these changes to those promoted by high-load resistance training (HL-RT). In a randomized within-subject design, fifteen healthy, untrained men were submitted to magnetic resonance imaging (MRI) for CSA and edema-induced muscle swelling assessment (fast spin echo inversion recovery, FSE-STIR). MRI was performed in LL-BFR and HL-RT at baseline (W0) and after 3 weeks (W3), with a further measure after 6 weeks (W6) for HL-RT. Participants were also assessed at these time points for indirect muscle damage markers (range of motion, ROM; muscle soreness, SOR). CSA significantly increased for all the quadriceps muscles, for both LL-BFR and HL-RT at W3 (all P < .05) compared to W0. However, FSE-STIR was elevated at W3 for all the quadriceps muscles only for HL-RT (all P < .0001), not LL-BFR (all P > .05). Significant increases and decreases were shown in SOR and ROM, respectively, for HL-RT in W3 compared to W0 (both P < .05), while these changes were mitigated at W6 compared to W0 (both P > .05). No significant changes in SOR or ROM were demonstrated for LL-BFR across the study. Early increases in CSA with LL-BFR seem to occur without the presence of muscle edema, whereas initial gains obtained by HL-RT were influenced by muscle edema, in addition to muscle hypertrophy.


Assuntos
Edema , Músculo Quadríceps/irrigação sanguínea , Músculo Quadríceps/fisiologia , Adaptação Fisiológica , Adolescente , Adulto , Constrição , Humanos , Imageamento por Ressonância Magnética , Masculino , Força Muscular , Mialgia , Fluxo Sanguíneo Regional , Treinamento Resistido , Adulto Jovem
7.
Med Sci Sports Exerc ; 48(5): 920-5, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26656773

RESUMO

UNLABELLED: Blood flow restriction in combination with low-load resistance training has been shown to increase muscle size and strength; however, the influence of cuff width on these adaptations is unknown. PURPOSE: The objective of this study is to determine the influence of different cuff widths on muscle size and strength, and also investigate whether a wider cuff would result in less adaptation compared with a narrow cuff when inflated to the same relative pressure (80% arterial occlusion pressure). METHODS: Eleven physically active males had their arms randomly divided into two separate conditions: low-load blood flow restriction exercise with a narrow cuff (BFR + N, 5 cm) and low-load blood flow restriction exercise with a wide cuff (BFR + W, 10 cm). All participants underwent 12 wk of unilateral elbow flexion at 20% of their one-repetition maximum (1RM). The elbow flexion strength (1RM), elbow flexor muscle cross-sectional area (CSA), arterial blood flow, training volume, RPE, and rating of perceived pain were assessed before and after training. RESULTS: Elbow flexion 1RM and CSA significantly increased in both conditions (BFR + N = 13.5% and 9% vs BFR + W = 11.9% and 11.2%, respectively). The arterial blood flow was significantly reduced when 80% of the arterial occlusion pressure was applied in both conditions (BFR + N = 61.2% and BFR + W = 63.5%). There were no significant differences in the training volume, RPE, or rating of perceived pain between conditions (P > 0.05). CONCLUSION: We wish to suggest that, regardless of cuff width, both protocols produced similar increases in 1RM and elbow flexor muscle CSA, and these responses may be related to the similar training volume and/or similar reductions in arterial blood flow produced when both cuffs were inflated to the same relative pressure.


Assuntos
Músculo Esquelético/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Treinamento Resistido , Torniquetes , Adaptação Fisiológica , Adulto , Braço/fisiologia , Artérias/fisiologia , Cotovelo/fisiologia , Hemodinâmica , Humanos , Masculino , Medição da Dor , Pressão , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA