Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(21): 30410-30422, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115043

RESUMO

Optical aberrations can greatly distort the image created by an optical element. Several aberrations can affect the image simultaneously and discerning or visualizing specific aberrations can be difficult. By making use of an optically levitated droplet as a light source, we have visualized the spherical aberration and coma of a lens. The droplet approximates a point source in the ray optic regime but, at the same time, creates a diffraction pattern in the far-field region similar to that used in the Ronchi test. When focused by a lens, this micro double point source creates patterns that resemble comets, barreling, hyperbolic triangles, and, most strikingly, a spider. We show how all these patterns are a consequence of spherical aberration and coma. The Zernike polynomials were used to quantify the value of several individual aberrations by comparing them to patterns resulting from numerical simulations.

2.
J Gen Physiol ; 156(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055192

RESUMO

The transient receptor vanilloid 1 (TRPV1) is a non-selective ion channel, which is activated by several chemical ligands and heat. We have previously shown that activation of TRPV1 by different ligands results in single-channel openings with different conductance, suggesting that the selectivity filter is highly dynamic. TRPV1 is weakly voltage dependent; here, we sought to explore whether the permeation of different monovalent ions could influence the voltage dependence of this ion channel. By using single-channel recordings, we show that TRPV1 channels undergo rapid transitions to closed states that are directly connected to the open state, which may result from structural fluctuations of their selectivity filter. Moreover, we demonstrate that the rates of these transitions are influenced by the permeant ion, suggesting that ion permeation regulates the voltage dependence of these channels. Our data could be the basis for more detailed MD simulations exploring the permeation mechanism and how the occupancy of different ions alters the three-dimensional structure of the pore of TRPV1 channels.


Assuntos
Canais de Cátion TRPV , Cátions , Canais de Cátion TRPV/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA