RESUMO
The transition from hunting-gathering to agriculture stands as one of the most important dietary revolutions in human history. Yet, due to a scarcity of well-preserved human remains from Pleistocene sites, little is known about the dietary practices of pre-agricultural human groups. Here we present the isotopic evidence of pronounced plant reliance among Late Stone Age hunter-gatherers from North Africa (15,000-13,000 cal BP), predating the advent of agriculture by several millennia. Employing a comprehensive multi-isotopic approach, we conducted zinc (δ66Zn) and strontium (87Sr/86Sr) analysis on dental enamel, bulk carbon (δ13C) and nitrogen (δ15N) and sulfur (δ34S) isotope analysis on dentin and bone collagen, and single amino acid analysis on human and faunal remains from Taforalt (Morocco). Our results unequivocally demonstrate a substantial plant-based component in the diets of these hunter-gatherers. This distinct dietary pattern challenges the prevailing notion of high reliance on animal proteins among pre-agricultural human groups. It also raises intriguing questions surrounding the absence of agricultural development in North Africa during the early Holocene. This study underscores the importance of investigating dietary practices during the transition to agriculture and provides insights into the complexities of human subsistence strategies across different regions.
Assuntos
Dieta , Humanos , Marrocos , História Antiga , Osso e Ossos/química , Arqueologia , Animais , Esmalte Dentário/química , Isótopos de Estrôncio/análiseRESUMO
Purpose: Dental calculus forms on teeth during the life of an individual and its investigation can yield information about diet, health status, and environmental pollution. Currently, the analytical techniques used to visualize the internal structure of human dental calculus and entrapped inclusions are limited and require destructive sampling, which cannot always be justified. Approach: We used propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SR- µ CT ) to non-destructively examine the internal organization of dental calculus, including its microstructure and entrapped inclusions, on both modern and archeological samples. Results: The virtual histological exploration of the samples shows that PPC-SR- µ CT is a powerful approach to visualize the internal organization of dental calculus. We identified several important features, including previously undetected negative imprints of enamel and dentine growth markers (perikymata and periradicular bands, respectively), the non-contiguous structure of calculus layers with multiple voids, and entrapped plant remains. Conclusions: PPC-SR- µ CT is an effective technique to explore dental calculus structural organization, and is especially powerful for enabling the identification of inclusions. The non-destructive nature of synchrotron tomography helps protect samples for future research. However, the irregular layers and frequent voids reveal a high heterogeneity and variability within calculus, with implications for research focusing on inclusions.
RESUMO
The frontal sinuses are cavities inside the frontal bone located at the junction between the face and the cranial vault and close to the brain. Despite a long history of study, understanding of their origin and variation through evolution is limited. This work compares most hominin species' holotypes and other key individuals with extant hominids. It provides a unique and valuable perspective of the variation in sinuses position, shape, and dimensions based on a simple and reproducible methodology. We also observed a covariation between the size and shape of the sinuses and the underlying frontal lobes in hominin species from at least the appearance of Homo erectus. Our results additionally undermine hypotheses stating that hominin frontal sinuses were directly affected by biomechanical constraints resulting from either chewing or adaptation to climate. Last, we demonstrate their substantial potential for discussions of the evolutionary relationships between hominin species.
Assuntos
Fósseis , Hominidae , Animais , Humanos , Crânio/anatomia & histologia , Encéfalo , ClimaRESUMO
Sub-fossilised remains may still contain highly degraded ancient DNA (aDNA) useful for palaeogenetic investigations. Whether X-ray computed [micro-] tomography ([µ]CT) imaging of these fossils may further damage aDNA remains debated. Although the effect of X-ray on DNA in living organisms is well documented, its impact on aDNA molecules is unexplored. Here we investigate the effects of synchrotron X-ray irradiation on aDNA from Pleistocene bones. A clear correlation appears between decreasing aDNA quantities and accumulating X-ray dose-levels above 2000 Gray (Gy). We further find that strong X-ray irradiation reduces the amount of nucleotide misincorporations at the aDNA molecule ends. No representative effect can be detected for doses below 200 Gy. Dosimetry shows that conventional µCT usually does not reach the risky dose level, while classical synchrotron imaging can degrade aDNA significantly. Optimised synchrotron protocols and simple rules introduced here are sufficient to ensure that fossils can be scanned without impairing future aDNA studies.
Assuntos
Osso e Ossos/diagnóstico por imagem , DNA Antigo , Fósseis/diagnóstico por imagem , Animais , Relação Dose-Resposta à Radiação , Síncrotrons , Raios XRESUMO
Modern micro-computed tomography techniques allow the accurate visualization of internal dental structures, and are becoming widely used within (paleo-) anthropological dental studies. There exist several types and name brands of microtomographic systems, however, which have been demonstrated to produce images that vary in resolution and signal-to-noise ratio. As a growing body of dental research using disparate microtomographic techniques is likely to continue accumulating, it is imperative that different systems are compared to ensure that results are comparable and not machine-dependent. In the present study, we compare volume, surface area, and linear measurements recorded on a sample of modern and fossil teeth using four microtomographic systems (three laboratory scanners, and the ID19 beamline of the European Synchrotron Radiation Facility). Results indicate that measurements are comparable between systems (within 3%), but that synchrotron radiation is superior to the other systems because its monochromatic X-rays prevent beam hardening and its parallel beam prevents geometric artifacts in the resultant images, making it easier to record measurements and see fine details at the enamel cervix or dentine horn tips. Although the synchrotron produces higher resolution images with less artifacts, results indicate that for gross morphological measurements (e.g., enamel cap volume, intercuspal distances), each of the scanners produces approximately the same measurements. Combining measurements of teeth from multiple microCT systems presupposes that measurements from each system are comparable; the research presented here indicates that this is the case when teeth are not severely diagenetically remineralized.