Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 13(8): 3455-62, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23865960

RESUMO

A scanning probe microscopy technique for probing local ionic dynamics in electrochemically active materials based on the first-order reversal curve current-voltage (FORC-IV) method is presented. FORC-IV imaging mode is applied to a Ca-substituted bismuth ferrite (Ca-BFO) system to separate the electronic and ionic phenomena in this material and visualize the spatial variability of these behaviors. The variable-temperature measurements further demonstrate the interplay between the thermally and electric-field-driven resistance changes in Ca-BFO. The FORC-IV is shown to be a simple, powerful, and flexible method for studying electrochemical activity of materials at the nanoscale and, in conjunction with the electrochemical strain microscopy, it can be used for differentiating ferroelectric and ionic behaviors.

2.
ACS Nano ; 7(8): 6806-15, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23837694

RESUMO

A scanning probe microscopy-based technique for probing local ionic and electronic transport and their dynamic behavior on the 10 ms to 10 s scale is presented. The time-resolved Kelvin probe force microscopy (tr-KPFM) allows mapping of surface potential in both space and time domains, visualizing electronic and ionic charge dynamics and separating underlying processes based on their time responses. Here, tr-KPFM is employed to explore the interplay of the adsorbed surface ions and bulk oxygen vacancies and their role in the resistive switching in a Ca-substituted bismuth ferrite thin film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA