Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Urol ; 204(3): 466-475, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32191585

RESUMO

PURPOSE: This is the first report of the development and performance of a platform that interrogates small noncoding RNAs (sncRNA) isolated from urinary exosomes. The Sentinel™ PCa Test classifies patients with prostate cancer from subjects with no evidence of prostate cancer, the miR Sentinel CS Test stratifies patients with prostate cancer between those with low risk prostate cancer (Grade Group 1) from those with intermediate and high risk disease (Grade Group 2-5), and the miR Sentinel HG Test stratifies patients with prostate cancer between those with low and favorable intermediate risk prostate cancer (Grade Group 1 or 2) and those with high risk (Grade Group 3-5) disease. MATERIALS AND METHODS: sncRNAs were extracted from urinary exosomes of 235 participants and interrogated on miR 4.0 microarrays. Using proprietary selection and classification algorithms, informative sncRNAs were selected to customize an interrogation OpenArray™ platform that forms the basis of the tests. The tests were validated using a case-control sample of 1,436 subjects. RESULTS: The performance of the miR Sentinel PCa Test demonstrated a sensitivity of 94% and specificity of 92%. The Sentinel CS Test demonstrated a sensitivity of 93% and specificity of 90% for prediction of the presence of Grade Group 2 or greater cancer, and the Sentinel HG Test demonstrated a sensitivity of 94% and specificity of 96% for the prediction of the presence of Grade Group 3 or greater cancer. CONCLUSIONS: The Sentinel PCa, CS and HG Tests demonstrated high levels of sensitivity and specificity, highlighting the utility of interrogation of urinary exosomal sncRNAs for noninvasively diagnosing and classifying prostate cancer with high precision.


Assuntos
Exossomos/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Pequeno RNA não Traduzido/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
2.
J Cell Biochem ; 119(7): 5359-5372, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29331043

RESUMO

The role of microRNAs (miRNA) in estrogen receptor (ER) signaling in the uterus and in endometrial cancer is not well understood. We therefore analyzed miRNA expression in uterine samples from a standard 3-day uterotrophic assay using young female adult rats to identify E2-regulated miRNAs. Microarray analysis identified 47 E2 down-regulated miRNAs including miR-30a, and 25 E2up-regulated miRNAs including miR-672, miR-203, and miR-146b. The strongly E2-upregulated miR-203 was selected for further analysis. miR-203 was deleted in the rat endometrial adenocarcinoma cell line, RUCA-I, using CRISPR/CAS9. Five clones devoid of miR-203 expression were generated. Proliferation was reduced and G2-arrest was observed in all miR-203 deficient RUCA-I clones. Transfection with a miR-203-3p mimic partially rescues this effect. Comparison of mRNA expression in three miR-203 knockout clones to wild type RUCA-I cells reveals 566 miR-203-upregulated and 592 miR-203-downregulated genes. 43 of the genes that are upregulated by miR-203 knockout in vitro are downregulated in the uterus by E2. Of these Acer2, Zbtb20, Ptn, Rcbtb2, Mum1l1, Hmgn3, and Nfat5 possess one or more seed sequence matches in their 3'-UTR that are predicted to be targets of miR-203. These data demonstrate the importance of E2 regulated miRNAs in general, and miR-203 in particular, for E2 regulated gene expression and physiological processes including proliferation and cell migration, in the uterus as well as in the etiology of endometrial carcinomas.


Assuntos
Neoplasias do Endométrio/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Útero/metabolismo , Animais , Sequência de Bases , Ciclo Celular , Proliferação de Células , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Estrogênios/farmacologia , Feminino , Perfilação da Expressão Gênica , Ratos , Ratos Endogâmicos Lew , Receptores de Estrogênio/genética , Homologia de Sequência , Útero/efeitos dos fármacos , Útero/patologia
3.
J Cell Biochem ; 116(9): 1982-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25755069

RESUMO

To identify chemical genetic interactions underlying the mechanism of action of histone deacetylase inhibitors (HDACi) a yeast deletion library was screened for hypersensitive deletion mutants that confer increased sensitivity to the HDACi, CG-1521. The screen demonstrated that loss of GCN5 or deletion of components of the Gcn5 histone acetyltransferase (HAT) complex, SAGA, sensitizes yeast to CG-1521-induced cell death. Expression profiling after CG-1521 treatment reveals increased expression of genes involved in metabolism and oxidative stress response, and oxidative stress response mutants are hypersensitive to CG-1521 treatment. Accumulation of reactive oxygen species and increased cell death are enhanced in the gcn5Δ deletion mutant, and are abrogated by anti-oxidants, indicating a central role of oxidative stress in CG-1521-induced cell death. In human cell lines, siRNA mediated knockdown of GCN5 or PCAF, or chemical inhibition of GCN5 enzymatic activity, increases the sensitivity to CG-1521 and SAHA. These data suggest that the combination of HDAC and GCN5/PCAF inhibitors can be used for cancer treatment.


Assuntos
Histona Acetiltransferases/genética , Inibidores de Histona Desacetilases/toxicidade , Ácidos Hidroxâmicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/genética , Morte Celular , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Biblioteca Gênica , Células HT29 , Histona Acetiltransferases/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Transativadores/genética , Fatores de Transcrição de p300-CBP/metabolismo
5.
BMC Genomics ; 15: 528, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24968945

RESUMO

BACKGROUND: Previous studies from our laboratory and others have demonstrated that in addition to altering chromatin acetylation and conformation, histone deacetylase inhibitors (HDACi) disrupt the acetylation status of numerous transcription factors and other proteins. A whole genome yeast deletion library screen was used to identify components of the transcriptional apparatus that modulate the sensitivity to the hydroxamic acid-based HDACi, CG-1521. RESULTS: Screening 4852 haploid Saccharomyces cerevisiae deletion strains for sensitivity to CG-1521 identifies 407 sensitive and 80 resistant strains. Gene ontology (GO) enrichment analysis shows that strains sensitive to CG-1521 are highly enriched in processes regulating chromatin remodeling and transcription as well as other ontologies, including vacuolar acidification and vesicle-mediated transport. CG-1521-resistant strains include those deficient in the regulation of transcription and tRNA modification. Components of the SAGA histone acetyltransferase (HAT) complex are overrepresented in the sensitive strains, including the catalytic subunit, Gcn5. Cell cycle analysis indicates that both the wild-type and gcn5Δ strains show a G1 delay after CG-1521 treatment, however the gcn5Δ strain displays increased sensitivity to CG-1521-induced cell death compared to the wild-type strain. To test whether the enzymatic activity of Gcn5 is necessary in the response to CG-1521, growth assays with a yeast strain expressing a catalytically inactive variant of the Gcn5 protein were performed and the results show that this strain is less sensitive to CG-1521 than the gcn5Δ strain. CONCLUSION: Genome-wide deletion mutant screening identifies biological processes that affect the sensitivity to the HDAC inhibitor CG-1521, including transcription and chromatin remodeling. This study illuminates the pathways involved in the response to CG-1521 in yeast and provides incentives to understand the mechanisms of HDAC inhibitors in cancer cells. The data presented here demonstrate that components of the SAGA complex are involved in mediating the response to CG-1521. Additional experiments suggest that functions other than the acetyltransferase activity of Gcn5 may be sufficient to attenuate the effects of CG-1521 on cell growth.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Inibidores de Histona Desacetilases/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Biologia Computacional , Farmacorresistência Fúngica/genética , Genótipo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases , Ácidos Hidroxâmicos/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Fenótipo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/efeitos dos fármacos
6.
Mol Cancer ; 10: 58, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21592394

RESUMO

BACKGROUND: There is evidence from epidemiological and in vitro studies that the biological effects of testosterone (T) on cell cycle and survival are modulated by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in prostate cancer. To investigate the cross talk between androgen- and vitamin D-mediated intracellular signaling pathways, the individual and combined effects of T and 1,25(OH)2D3 on global gene expression in LNCaP prostate cancer cells were assessed. RESULTS: Stringent statistical analysis identifies a cohort of genes that lack one or both androgen response elements (AREs) or vitamin D response elements (VDREs) in their promoters, which are nevertheless differentially regulated by both steroids (either additively or synergistically). This suggests that mechanisms in addition to VDR- and AR-mediated transcription are responsible for the modulation of gene expression. Microarray analysis shows that fifteen miRNAs are also differentially regulated by 1,25(OH)2D3 and T. Among these miR-22, miR-29ab, miR-134, miR-1207-5p and miR-371-5p are up regulated, while miR-17 and miR-20a, members of the miR-17/92 cluster are down regulated. A number of genes implicated in cell cycle progression, lipid synthesis and accumulation and calcium homeostasis are among the mRNA targets of these miRNAs. Thus, in addition to their well characterized effects on transcription, mediated by either or both cognate nuclear receptors, 1,25(OH)2D3 and T regulate the steady state mRNA levels by modulating miRNA-mediated mRNA degradation, generating attenuation feedback loops that result in global changes in mRNA and protein levels. Changes in genes involved in calcium homeostasis may have specific clinical importance since the second messenger Ca2+ is known to modulate various cellular processes, including cell proliferation, cell death and cell motility, which affects prostate cancer tumor progression and responsiveness to therapy. CONCLUSIONS: These data indicate that these two hormones combine to drive a differentiated phenotype, and reinforce the idea that the age dependent decline in both hormones results in the de-differentiation of prostate tumor cells, which results in increased proliferation, motility and invasion common to aggressive tumors. These studies also reinforce the potential importance of miRNAs in prostate cancer progression and therapeutic outcomes.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Testosterona/farmacologia , Vitamina D/análogos & derivados , Androgênios/farmacologia , Ciclo Celular/efeitos dos fármacos , Morte Celular , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Homeostase/genética , Humanos , Masculino , MicroRNAs/genética , Anotação de Sequência Molecular , Neoplasias da Próstata/genética , Neoplasias da Próstata/fisiopatologia , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Vitamina D/farmacologia , Vitaminas/farmacologia
7.
J Cell Biochem ; 109(4): 634-42, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20039309

RESUMO

Iejimalides are novel macrolides that are cytostatic or cytotoxic against a wide range of cancer cells at low nanomolar concentrations. A recent study by our laboratory characterized the expression of genes and proteins that determine the downstream effects of iejimalide B. However, little is known about the cellular target(s) of iejimalide or downstream signaling that lead to cell-cycle arrest and/or apoptosis. Iejimalides have been shown to inhibit the activity of vacuolar H(+)-ATPase (V-ATPase) in osteoclasts, but how this inhibition may lead to cell-cycle arrest and/or apoptosis in epithelial cells is not known. In this study, MCF-7 breast cancer cells were treated with iejimalide A or B and analyzed for changes in cell-cycle dynamics, apoptosis, lysosomal pH, cytoplasmic pH, mitochondrial membrane potential, and generation of reactive oxygen species. Both iejimalides A and B sequentially neutralize the pH of lysosomes, induce S-phase cell-cycle arrest, and trigger apoptosis in MCF-7 cells. Apoptosis occurs through a mechanism that involves oxidative stress and mitochondrial depolarization but not cytoplasmic acidification. These data confirm that iejimalides inhibit V-ATPase activity in the context of epithelial tumor cells, and that this inhibition may lead to a lysosome-initiated cell death process.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Carbamatos/farmacologia , Macrolídeos/farmacologia , Fase S/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Carbamatos/uso terapêutico , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lisossomos , Macrolídeos/uso terapêutico , Potencial da Membrana Mitocondrial , Estresse Oxidativo
8.
BMC Cancer ; 10: 107, 2010 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-20307318

RESUMO

BACKGROUND: Clusterin is a secreted glycoprotein that is upregulated in a variety of cell lines in response to stress, and enhances cell survival. A second nuclear isoform of clusterin that is associated with cell death has also been identified. The aim of this study was to determine the role(s) of the secretory isoform in breast tumor progression and metastasis. METHODS: To investigate the role of secretory clusterin in the biology of breast cancer tumor growth and resistance to therapy we have engineered an MCF-7 cell line (MCF-7CLU) that over-expresses clusterin. We have measured the in vitro effects of clusterin over-expression on cell cycle, cell death, and sensitivity to TNFalpha and tamoxifen. Using an orthotopic model of breast cancer, we have also determined the effects of over-expression of clusterin on tumor growth and metastatic progression. RESULTS: In vitro, over-expression of secretory clusterin alters the cell cycle kinetics and decreases the rate of cell death, resulting in the enhancement of cell growth. Over-expression of secretory clusterin also blocks the TNFalpha-mediated induction of p21 and abrogates the cleavage of Bax to t-Bax, rendering the MCF-7CLU cells significantly more resistant to the cytokine than the parental cells. Orthotopic primary tumors derived from MCF-7CLU cells grow significantly more rapidly than tumors derived from parental MCF-7 cells and, unlike the parental cells, metastasize frequently to the lungs. CONCLUSIONS: These data suggest that secretory clusterin, which is frequently up-regulated in breast cancers by common therapies, including anti-estrogens, may play a significant role in tumor growth, metastatic progression and subsequent drug resistance in surviving cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Clusterina/biossíntese , Tamoxifeno/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Clusterina/genética , Progressão da Doença , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Arch Oral Biol ; 111: 104648, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31927405

RESUMO

OBJECTIVE: Caries and periodontitis are uncommon in free ranging great apes but a major oral disease in humans. The aim was to analyze abundance and diversity of oral bacteria of western humans and their closest relatives, to examine if zoo apes feeding on diet other than in their natural habitat show caries and periodontitis associated salivary bacteria and comparable susceptibility for oral civilization diseases as humans. DESIGN: Bacterial composition of human and great ape saliva samples were compared by analyzing the V3 region of the bacteria 16S rRNA gene by Next Generation Sequencing with Ion Torrent. RESULTS: Results show species-specific differences in the salivary bacteria phyla and genera composition among all apes. Moreover, salivary bacterial composition within non-human apes showed higher intra-individual differences than within humans. Human saliva exhibited lowest bacteria diversity. Different behavioral patterns including (oral) hygiene standards of humans and non-human apes might cause differences. All species differed in diversity and abundance of caries associated bacteria genera. Human saliva revealed higher abundance of caries and periodontitis relevant bacteria in contrast to other great apes, which might be supported by higher consume of refined cariogenic food items, possibly raising their risk for oral disease susceptibility. CONCLUSIONS: The study offers first clues on caries and periodontitis relevant bacteria of captive great ape species in comparison to humans. Higher susceptibility to oral diseases for humans than for their closest relatives, leads to the question, if the oral microbiome changed during evolution and how it is influenced by the human life style.


Assuntos
Cárie Dentária , Periodontite , Animais , Bactérias , Hominidae , Humanos , RNA Ribossômico 16S , Saliva
10.
Cancer Epidemiol Biomarkers Prev ; 18(2): 393-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19155441

RESUMO

The role of clusterin in tumor growth and progression remains unclear. Overexpression of cytoplasmic clusterin has been studied in aggressive colon tumors; however, no correlation between clusterin expression and survival in colorectal cancer has been identified to date. We assessed levels of clusterin expression in a group of stage II colorectal cancer patients to assess its utility as a prognostic marker. The study included 251 patients with stage II colorectal cancer. Tissue microarrays were constructed and immunohistochemistry done and correlated with clinical features and long term outcome. Dual immunofluorescence and confocal microscopy were used with terminal deoxynucleotidyl-transferase-mediated dUTP nick-end labeling probes and clusterin antibody to assess the degree of co localization. Percentage epithelial cytoplasmic staining was higher in tumor compared with nonadjacent normal mucosa (P < 0.001). Within the stromal compartment, percentage cytoplamic staining and intensity was lower in tumor tissue compared with normal nonadjacent mucosa (P < or = 0.001). Survival was significantly associated with percentage epithelial cytoplasmic staining (P < 0.001), epithelial cytoplasmic staining intensity (P < 0.001), percentage stromal cytoplasmic staining (P = 0.002), and stromal cytoplasmic staining intensity (P < 0.001). Clusterin levels are associated with poor survival in stage II colorectal cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Clusterina/metabolismo , Neoplasias Colorretais/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Distribuição de Qui-Quadrado , Neoplasias Colorretais/patologia , Feminino , Humanos , Técnicas Imunoenzimáticas , Marcação In Situ das Extremidades Cortadas , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Reprodutibilidade dos Testes , Estatísticas não Paramétricas
11.
Mol Cancer Ther ; 7(7): 1931-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18645003

RESUMO

Previous studies comparing the effects of two histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and CG-1521, have shown that these compounds selectively inhibit HDAC and induce differentially acetylated p53 isoforms and assembly of mutually exclusive transcriptional complexes on the p21 promoter. To determine whether the differential transcriptional regulation seen in p21 gene is unique or whether it is representative of the genome-wide effects of these two HDAC inhibitors, we have used microarray and Ingenuity pathway analysis to compare the effects of TSA and CG-1521 on gene expression on LNCaP cells. Gene array analysis confirmed by quantitative real-time PCR shows that CG-1521 modulates the expression of a highly circumscribed group of genes involved in cell cycle progression and cell death. In contrast, TSA appears to induce widespread transrepression of many genes and does not modulate the expression of the same cohort as CG-1521. These data show that the selective effects of CG-1521 and TSA on the assembly of transcription complexes are not unique to the p21 gene and suggest that selective inhibition of HDAC can lead to significant changes in gene expression through the acetylation of transcription factors including but not limited to p53.


Assuntos
Ciclo Celular/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fase G2/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Cinetocoros/efeitos dos fármacos , Masculino , Mitose/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Int J Nanomedicine ; 14: 1335-1346, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863064

RESUMO

BACKGROUND: The efficacy of epigenetic drugs, such as histone deacetylase inhibitors, is often diminished by poor aqueous solubility resulting in limited bioavailability and a low therapeutic index. To overcome the suboptimal therapeutic index, we have developed a biocompatible starch nanoparticle formulation of CG-1521, a histone deacetylase inhibitor in preclinical development for hard-to-treat breast cancers, which improves its bioavailability and half-life. METHODS: The physicochemical parameters (size, zeta potential, morphology, loading, and release kinetics) of these nanoparticles (CG-NPs) have been optimized and their cytotoxic and apoptotic capacities measured in MCF-7 breast cancer cell line. The mechanism of action of the encapsulated drug was compared with the free drug at molecular level. RESULTS: We show that encapsulation of CG-1521 substantially reduces the release rate of drug and provides a significantly enhanced cytotoxic ability of nanoparticles compared with equivalent dose of free CG-1521. CG-NPs induced cell cycle arrest and significant apoptosis in MCF-7 cells in vitro. The biological action of encapsulated drug has the similar impact with free drug on gene expression. CONCLUSION: The findings suggest that encapsulation of CG-1521 into starch nanoparticles can improve drug delivery of histone deacetylase inhibitors for breast cancer therapy without interfering with the mechanism of action of the drug.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Nanopartículas/química , Amido/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Cinética , Células MCF-7 , Nanopartículas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
J Steroid Biochem Mol Biol ; 189: 248-258, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30664926

RESUMO

Vitamin D3 and its receptor are responsible for controlling energy expenditure in adipocytes and have direct roles in the transcriptional regulation of energy metabolic pathways. This phenomenon also has a significant impact on the etiology of prostate cancer (PCa). Using several in vitro models, the roles of vitamin D3 on energy metabolism and its implication in primary, early, and late invasive PCa were investigated. BODIPY staining and qPCR analyses show that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) up-regulates de novo lipogenesis in PCa cells by orchestrating transcriptional regulation that affects cholesterol and lipid metabolic pathways. This lipogenic effect is highly dependent on the interaction of several nuclear receptors and their corresponding ligands, including androgen receptor (AR), vitamin D receptor (VDR), and retinoid X receptor (RXR). In contrast, inhibition of peroxisome proliferator-activated receptor alpha (PPARα) signaling blocks the induction of the lipogenic phenotype induced by these receptors. Furthermore, 1,25(OH)2D3, T, and 9 cis-retinoic acid (9-cis RA) together redirect cytosolic citrate metabolism toward fatty acid synthesis by restoring normal prostatic zinc homeostasis that functions to truncate TCA cycle metabolism. 1,25(OH)2D3, T, and 9-cis RA also exert additional control of TCA cycle metabolism by down-regulating SLC25A19, which limits the availability of the co-factor thiamine pyrophosphate (TPP) that is required for enzymatic catalyzation of citrate oxidation. This extensive metabolic reprogramming mediated by 1,25(OH)2D3, T, and 9-cis RA is preserved in all in vitro cell lines investigated. These data suggest that 1,25(OH)2D3 and T are important regulators of normal prostatic energy metabolism. Based on the close association between energy metabolism and cancer progression, supplementation of vitamin D3 and testosterone can restrict the energy production that is required to drive PCa progression by maintaining proper zinc homeostasis and inhibiting TCA cycle activity in PCa cells.


Assuntos
Calcitriol/metabolismo , Metabolismo Energético , Neoplasias da Próstata/metabolismo , Testosterona/metabolismo , Zinco/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Receptores de Calcitriol/metabolismo
14.
J Cell Biochem ; 105(4): 998-1007, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18773415

RESUMO

Iejimalide B, a marine macrolide, causes growth inhibition in a variety of cancer cell lines at nanomolar concentrations. We have investigated the effects of Iejimalide B on cell cycle kinetics and apoptosis in the p53+/AR+ LNCaP and p53-/AR- PC-3 prostate cancer cell lines. Iejimalide B, has a dose and time dependent effect on cell number (as measured by crystal violet assay) in both cell lines. In LNCaP cells Iejimalide B induces a dose dependent G0/G1 arrest and apoptosis at 48 h (as measured by Apo-BrdU staining). In contrast, Iejimalide B initially induces G0/G1 arrest followed by S phase arrest but does not induce apoptosis in PC-3 cells. qPCR and Western analysis suggests that Iejimalide B modulates the steady state level of many gene products associated with cell cycle (including cyclins D, E, and B and p21(waf1/cip1)) and cell death (including survivin, p21B and BNIP3L) in LNCaP cells. In PC-3 cells Iejimalide B induces the expression of p21(waf1/cip1), down regulates the expression of cyclin A, and does not modulate the expression of the genes associated with cell death. Comparison of the effects of Iejimalide B on the two cell lines suggests that Iejimalide B induces cell cycle arrest by two different mechanisms and that the induction of apoptosis in LNCaP cells is p53-dependent.


Assuntos
Apoptose/efeitos dos fármacos , Carbamatos/farmacologia , Proliferação de Células/efeitos dos fármacos , Macrolídeos/farmacologia , Neoplasias da Próstata/patologia , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Interfase , Cinética , Masculino , Proteína Supressora de Tumor p53
15.
Org Lett ; 9(22): 4619-22, 2007 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17915890

RESUMO

The potent anticancer compound iejimalide B (1) was prepared by a total synthesis through a strategy that features Julia olefinations, Wittig olefinations, a Carreira enantioselective alkynylation, a Heck reaction, a Marshall propargylation reaction, a Stille coupling, and a Shiina macrolactonization.


Assuntos
Antineoplásicos/síntese química , Carbamatos/síntese química , Macrolídeos/síntese química , Estrutura Molecular
16.
J Steroid Biochem Mol Biol ; 171: 133-143, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28285017

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion of organic compounds, abundant in exhaust fumes and cigarette smoke. They act by binding to the aryl hydrocarbon receptor (AHR) which induces expression of phase 1 and phase 2 enzymes in the liver. PAH induced AHR activation may also lead to adverse effects by modulating other pathways, for example estrogen receptor (ER) signaling in the female reproductive tract. We have investigated the effects of the PAH 3-methylcholanthrene (3-MC) on 17ß-estradiol (E2) dependent signaling in the uterus of ovariectomized rats to characterize the cross talk between AHR and ER on an mRNA transcriptome wide scale. A standard three day uterotrophic assay was performed in young adult Lewis rats. Treatment induced effects were analyzed using histology, immunohistochemistry and gene expression analysis by microarray and qPCR. 3-MC shows broad E2 antagonistic effects on uterine mRNA transcription of the vast majority of E2 regulated genes, significantly altering prostaglandin biosynthesis, complement activation, coagulation pathways and other inflammatory response pathways. The regulation of ER expression in the uterus, but not the regulation of E2 metabolism in the liver, was identified as a potentially important factor in mediating this general antiestrogenic effect. The regulation of prostaglandin biosynthesis by E2 is important for inflammation-like events during pregnancy including the initiation of birth. Our results suggest that adverse effects of PAHs on prostaglandin related pathways are likely caused by the interference with E2 signaling, specifically by inhibiting the E2 mediated downregulation of PGF2α. Characterization of the generalized antagonistic effect of 3-MC on E2 dependent signaling in the rat uterus thus contributes to a better understanding of molecular mechanisms of the toxicity of PAHs in female reproductive organs.


Assuntos
Carcinógenos Ambientais/toxicidade , Estradiol/metabolismo , Moduladores de Receptor Estrogênico/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Metilcolantreno/toxicidade , Receptores de Hidrocarboneto Arílico/agonistas , Útero/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Estradiol/química , Antagonistas de Estrogênios/toxicidade , Feminino , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Especificidade de Órgãos , Ovariectomia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Endogâmicos Lew , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Útero/citologia , Útero/imunologia , Útero/metabolismo
17.
Environ Health Perspect ; 124(5): 601-10, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26372666

RESUMO

BACKGROUND: Cross-talk between the aryl hydrocarbon receptor (AHR) and the estrogen receptor (ER) plays a major role in signaling processes in female reproductive organs. OBJECTIVES: We investigated the influence of the AHR ligand 3-methylcholanthrene (3-MC) on ER-mediated signaling in mammary gland tissue of ovariectomized (ovx) rats. METHODS: After 14 days of hormonal decline, ovx rats were treated for 3 days with 4 µg/kg 17ß-estradiol (E2), 15 mg/kg 8-prenylnaringenin (8-PN), 15 mg/kg 3-MC, or a combination of these compounds (E2 + 3-MC, 8-PN + 3-MC). Whole-mount preparations of the mammary gland were used to count terminal end buds (TEBs). Protein expression studies (immunohistochemistry, immunofluorescence), a cDNA microarray, pathway analyses, and quantitative real-time polymerase chain reaction (qPCR) were performed to evaluate the interaction between AHR- and ER-mediated signaling pathways. RESULTS: E2 treatment increased the number of TEBs and the levels of Ki-67 protein and progesterone receptor (PR); this treatment also changed the expression of 325 genes by more than 1.5-fold. Although 3-MC treatment alone had marginal impact on gene or protein expression, when rats were co-treated with 3-MC and E2, 3-MC strongly inhibited E2-induced TEB development, protein synthesis, and the expression of nearly half of E2-induced genes. This inhibitory effect of 3-MC was partially mirrored when 8-PN was used as an ER ligand. The anti-estrogenicity of ligand-activated AHR was at least partly due to decreased protein levels of ERα in ductal epithelial cells. CONCLUSION: Our data show transcriptome-wide anti-estrogenic properties of ligand-activated AHR on ER-mediated processes in the mammary gland, thereby contributing an explanation for the chemopreventive and endocrine-disrupting potential of AHR ligands. CITATION: Helle J, Bader MI, Keiler AM, Zierau O, Vollmer G, Chittur SV, Tenniswood M, Kretzschmar G. 2016. Cross-talk in the female rat mammary gland: influence of aryl hydrocarbon receptor on estrogen receptor signaling. Environ Health Perspect 124:601-610; http://dx.doi.org/10.1289/ehp.1509680.


Assuntos
Glândulas Mamárias Animais/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Estradiol , Receptor alfa de Estrogênio , Feminino , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Ativação Transcricional
18.
Oncogene ; 22(41): 6408-23, 2003 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-14508521

RESUMO

Mammary epithelial cells are embedded in a unique extracellular environment to which adipocytes and other stromal cells contribute. Mammary epithelial cells are critically dependent on this milieu for survival. However, it remains unknown which adipocyte-secreted factors are required for the survival of the mammary epithelia and what role these adipokines play in the process of ductal carcinoma tumorigenesis. Here, we take a systematic molecular approach to investigate the multiple ways adipocytes and adipokines can uniquely influence the characteristics and phenotypic behavior of malignant breast ductal epithelial cells. Microarray analysis and luciferase reporter assays indicate that adipokines specifically induce several transcriptional programs involved in promoting tumorigenesis, including increased cell proliferation (IGF2, FOS, JUN, cyclin D1), invasive potential (MMP1, ATF3), survival (A20, NFkappaB), and angiogenesis. One of the key changes in the transformed ductal epithelial cells associated with the cell cycle involves the induction of NFkappaB (five-fold) and cyclin D1 (three-fold). We show that by regulating the transcription of these molecules, the synergistic activity of adipocyte-derived factors can potentiate MCF-7 cell proliferation. Furthermore, compared to other stromal cell-secreted factors, the full complement of adipokines shows an unparalleled ability to promote increased cell motility, migration, and the capacity for angiogenesis. Adipocyte-secreted factors can affect tumorigenesis by increasing the stabilization of pro-oncogenic factors such as beta-catenin and CDK6 as a result of a reduction in the gene expression of their inhibitors (i.e. p18). An in vivo coinjection system using 3T3-L1 adipocytes and SUM159PT cells effectively recapitulates the host-tumor interactions in primary tumors. Type VI collagen, a soluble extracellular matrix protein abundantly expressed in adipocytes, is further upregulated in adipocytes during tumorigenesis. It promotes GSK3beta phosphorylation, beta-catenin stabilization, and increased beta-catenin activity in breast cancer cells and may critically contribute towards tumorigenesis when not counterbalanced by other factors.


Assuntos
Adipócitos/metabolismo , Apoptose/genética , Neoplasias/etiologia , Proto-Oncogenes , Transcrição Gênica , Animais , Movimento Celular , Colágeno Tipo VI/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citometria de Fluxo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Transativadores/metabolismo , Regulação para Cima , beta Catenina
19.
Cancer Biol Ther ; 16(11): 1604-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26383180

RESUMO

Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase that has mainly been studied in haematopoietic cells. We have investigated whether BTK is a potential therapeutic target in prostate cancer. We find that BTK is expressed in prostate cells, with the alternate BTK-C isoform predominantly expressed in prostate cancer cells and tumors. This isoform is transcribed from an alternative promoter and results in a protein with an amino-terminal extension. Prostate cancer cell lines and prostate tumors express more BTK-C transcript than the malignant NAMALWA B-cell line or human lymphomas. BTK protein expression is also observed in tumor tissue from prostate cancer patients. Down regulation of this protein with RNAi or inhibition with BTK-specific inhibitors, Ibrutinib, AVL-292 or CGI-1746 decrease cell survival and induce apoptosis in prostate cancer cells. Microarray results show that inhibiting BTK under these conditions increases expression of apoptosis related genes, while overexpression of BTK-C is associated with elevated expression of genes with functions related to cell adhesion, cytoskeletal structure and the extracellular matrix. These results are consistent with studies that show that BTK signaling is important for adhesion and migration of B cells and suggest that BTK-C may confer similar properties to prostate cancer cells. Since BTK-C is a survival factor for these cells, it represents both a potential biomarker and novel therapeutic target for prostate cancer.


Assuntos
Neoplasias da Próstata/enzimologia , Proteínas Tirosina Quinases/fisiologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Expressão Gênica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Terapia de Alvo Molecular , Fosforilação , Piperidinas , Neoplasias da Próstata/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Regulação para Cima
20.
Endocr Relat Cancer ; 11(4): 823-30, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15613455

RESUMO

Tamoxifen is the most widely prescribed anti-neoplastic drug for the treatment of both localized and metastatic breast cancer. It is also the prototype for a class of drugs that are referred to as selective estrogen receptor modifiers (SERMs), most of which have both estrogenic and anti-estrogenic activity in estrogen target tissues including the breast and endometrium. The underlying mechanisms of action of SERMs in the breast and endometrium that lead to profound differences in the tissue-specific effects of tamoxifen have not yet been elucidated. We have compared the effects of tamoxifen and the pure anti-estrogen ICI 182,780 (Faslodex) in the RUCA-I hormone-responsive rat endometrial cell line in vitro and in vivo. In cell culture, RUCA-I cells responded to both estrogens and anti-estrogens, and the expression of clusterin and complement C3 mRNAs required the presence of estradiol and was repressed in the absence of estradiol or in the presence of the pure anti-estrogen ICI 182,780. Tamoxifen, on the other hand, induced both complement C3 and clusterin mRNA in the absence of estradiol and failed to repress their expression in the presence of estradiol. When grown as subcutaneous xenografts in syngeneic Da/Han rats for 5 weeks, the RUCA-I cells retained their sensitivity to estradiol, as demonstrated by significantly enhanced tumor growth in intact female rats compared with the growth in ovariectomized rats. But neither ICI 182,780 nor tamoxifen had a significant impact on tumor growth in cycling or ovariectomized animals. On the other hand, tamoxifen was potently estrogenic in metastatic lymph nodes, increasing the size of the lymph node tumors almost 6-fold over that seen in the intact cycling animals. In primary tumors, the expression of complement C3 mirrored that seen in vitro, although tamoxifen showed some agonist activity in ovariectomized animals. Tamoxifen also displayed marked agonist activity with respect to clusterin expression and enhanced clusterin mRNA levels and protein in both the primary tumors and lymph metastases in intact and ovariectomized animals. Given the recent demonstration that over-expression of clusterin increases the metastatic potential of breast cancer cells, these data may provide a mechanistic explanation for the increased incidence of endometrial cancer in postmenopausal patients treated with tamoxifen.


Assuntos
Antineoplásicos Hormonais/farmacologia , Complemento C3/biossíntese , Neoplasias do Endométrio/metabolismo , Tamoxifeno/farmacologia , Útero/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Complemento C3/genética , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Feminino , Fulvestranto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metástase Neoplásica , RNA Mensageiro/biossíntese , Ratos , Ratos Endogâmicos , Transplante Heterólogo , Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA