Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(4): e2318093121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232291

RESUMO

In this study, we aimed to address the current limitations of therapies for macro-metastatic triple-negative breast cancer (TNBC) and provide a therapeutic lead that overcomes the high degree of heterogeneity associated with this disease. Specifically, we focused on well-documented but clinically underexploited cancer-fueling perturbations in mRNA translation as a potential therapeutic vulnerability. We therefore developed an orally bioavailable rocaglate-based molecule, MG-002, which hinders ribosome recruitment and scanning via unscheduled and non-productive RNA clamping by the eukaryotic translation initiation factor (eIF) 4A RNA helicase. We demonstrate that MG-002 potently inhibits mRNA translation and primary TNBC tumor growth without causing overt toxicity in mice. Importantly, given that metastatic spread is a major cause of mortality in TNBC, we show that MG-002 attenuates metastasis in pre-clinical models. We report on MG-002, a rocaglate that shows superior properties relative to existing eIF4A inhibitors in pre-clinical models. Our study also paves the way for future clinical trials exploring the potential of MG-002 in TNBC and other oncological indications.


Assuntos
RNA Helicases , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , RNA Helicases/genética , RNA Helicases/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Biossíntese de Proteínas , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Ribossomos/metabolismo
2.
Am J Hum Genet ; 105(3): 625-630, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31303264

RESUMO

Rothmund-Thomson syndrome (RTS) is an autosomal-recessive disorder characterized by poikiloderma, sparse hair, short stature, and skeletal anomalies. Type 2 RTS, which is defined by the presence of bi-allelic mutations in RECQL4, is characterized by increased cancer susceptibility and skeletal anomalies, whereas the genetic basis of RTS type 1, which is associated with juvenile cataracts, is unknown. We studied ten individuals, from seven families, who had RTS type 1 and identified a deep intronic splicing mutation of the ANAPC1 gene, a component of the anaphase-promoting complex/cyclosome (APC/C), in all affected individuals, either in the homozygous state or in trans with another mutation. Fibroblast studies showed that the intronic mutation causes the activation of a 95 bp pseudoexon, leading to mRNAs with premature termination codons and nonsense-mediated decay, decreased ANAPC1 protein levels, and prolongation of interphase. Interestingly, mice that were heterozygous for a knockout mutation have an increased incidence of cataracts. Our results demonstrate that deficiency in the APC/C is a cause of RTS type 1 and suggest a possible link between the APC/C and RECQL4 helicase because both proteins are involved in DNA repair and replication.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/genética , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/genética , Mutação , Síndrome de Rothmund-Thomson/genética , Humanos
3.
J Virol ; 90(20): 9433-45, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27512067

RESUMO

UNLABELLED: Chicken anemia virus (CAV) is a single-stranded circular DNA virus that carries 3 genes, the most studied of which is the gene encoding VP3, also known as apoptin. This protein has been demonstrated to specifically kill transformed cells while leaving normal cells unharmed in a manner that is independent of p53 status. Although the mechanistic basis for this differential activity is unclear, it is evident that the subcellular localization of the protein is important for the difference. In normal cells, apoptin exists in filamentous networks in the cytoplasm, whereas in transformed cells, apoptin is present in the nucleus and appears as distinct foci. We have previously demonstrated that DNA damage signaling through the ataxia telangiectasia mutated (ATM) pathway induces the translocation of apoptin from the cytoplasm to the nucleus, where it induces apoptosis. We found that apoptin contains four checkpoint kinase consensus sites and that mutation of either threonine 56 or 61 to alanine restricts apoptin to the cytoplasm. Furthermore, treatment of tumor cells expressing apoptin with inhibitors of checkpoint kinase 1 (Chk1) and Chk2 causes apoptin to localize to the cytoplasm. Importantly, silencing of Chk2 rescues cancer cells from the cytotoxic effects of apoptin. Finally, treatment of virus-producing cells with Chk inhibitor protects them from virus-mediated toxicity and reduces the titer of progeny virus. Taken together, our results indicate that apoptin is a sensor of DNA damage signaling through the ATM-Chk2 pathway, which induces it to migrate to the nucleus during viral replication. IMPORTANCE: The chicken anemia virus (CAV) protein apoptin is known to induce tumor cell-specific death when expressed. Therefore, understanding its regulation and mechanism of action could provide new insights into tumor cell biology. We have determined that checkpoint kinase 1 and 2 signaling is important for apoptin regulation and is a likely feature of both tumor cells and host cells producing virus progeny. Inhibition of checkpoint signaling prevents apoptin toxicity in tumor cells and attenuates CAV replication, suggesting it may be a future target for antiviral therapy.


Assuntos
Apoptose/genética , Proteínas do Capsídeo/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Vírus da Anemia da Galinha/genética , Fosforilação/genética , Replicação Viral/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/virologia , Dano ao DNA/genética , Humanos , Neoplasias/metabolismo , Neoplasias/virologia , Transdução de Sinais/genética
4.
J Virol ; 89(8): 4685-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653433

RESUMO

The adenovirus E4orf4 protein expressed at high levels kills cancer cells but not normal human primary cells. Previous studies suggested that disruption of processes that regulate mitosis may underlie E4orf4 toxicity. Here we have used live imaging to show that E4orf4 induces a slowed defective transit through mitosis, exhibiting a delay or often failure in cytokinesis that may account for an accumulation of G1 tetraploids in the population of dying E4orf4-expressing cells.


Assuntos
Mitose/fisiologia , Imagem Molecular/métodos , Proteínas Virais/fisiologia , Proteínas Virais/ultraestrutura , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Imagem com Lapso de Tempo
6.
Diabetologia ; 58(1): 149-57, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381555

RESUMO

AIMS/HYPOTHESIS: Obesity is a global epidemic resulting from increased energy intake, which alters energy homeostasis and results in an imbalance in fat storage and breakdown. G0/G1 switch gene 2 (G0s2) has been recently characterised in vitro as an inhibitor of adipose triglyceride lipase (ATGL), the rate-limiting step in fat catabolism. In the current study we aim to functionally characterise G0s2 within the physiological context of a mouse model. METHODS: We generated a mouse model in which G0s2 was deleted. The homozygous G0s2 knockout (G0s2 (-/-)) mice were studied over a period of 22 weeks. Metabolic variables were measured including body weight and body composition, food intake, glucose and insulin tolerance tests, energy metabolism and thermogenesis. RESULTS: We report that G0s2 inhibits ATGL and regulates lipolysis and energy metabolism in vivo. G0s2 (-/-) mice are lean, resistant to weight gain induced by a high-fat diet and are glucose tolerant and insulin sensitive. The white adipose tissue of G0s2 (-/-) mice has enhanced lipase activity and adipocytes showed enhanced stimulated lipolysis. Energy metabolism in the G0s2 (-/-) mice is shifted towards enhanced lipid metabolism and increased thermogenesis. G0s2 (-/-) mice showed enhanced cold tolerance and increased expression of thermoregulatory and oxidation genes within white adipose tissue, suggesting enhanced 'browning' of the white adipose tissue. CONCLUSIONS/INTERPRETATION: Our data show that G0s2 is a physiological regulator of adiposity and energy metabolism and is a potential target in the treatment of obesity and insulin resistance.


Assuntos
Adipócitos Marrons/fisiologia , Tecido Adiposo Branco/fisiologia , Proteínas de Ciclo Celular/genética , Transdiferenciação Celular/genética , Dieta Hiperlipídica , Resistência à Insulina/genética , Aumento de Peso/genética , Adiposidade/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Knockout , Termogênese/genética
7.
J Virol ; 88(22): 13249-59, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210169

RESUMO

UNLABELLED: Adenovirus type 5 E4orf4 is a multifunctional protein that regulates viral gene expression. The activities of E4orf4 are mainly mediated through binding to protein phosphatase 2A (PP2A). E4orf4 recruits target phosphoproteins into complexes with PP2A, resulting in dephosphorylation of host factors, such as SR splicing factors. In the current study, we utilized immunoprecipitation followed by mass spectrometry to identify novel E4orf4-interacting proteins. In this manner we identified Nup205, a component of the nuclear pore complex (NPC) as an E4orf4 interacting partner. The arginine-rich motif (ARM) of E4orf4 was required for interaction with Nup205 and for nuclear localization of E4orf4. ARMs are commonly found on viral nuclear proteins, and we observed that Nup205 interacts with three different nuclear viral proteins containing ARMs. E4orf4 formed a trimolecular complex containing both Nup205 and PP2A. Furthermore, Nup205 complexed with E4orf4 was hypophosphorylated, suggesting that the protein is specifically targeted for dephosphorylation. An adenovirus mutant that does not express E4orf4 (Orf4(-)) displayed elevated early and reduced late gene expression relative to that of the wild type. We observed that knockdown of Nup205 resulted in the same phenotype as that of the Orf4(-) virus, suggesting that the proteins function as a complex to regulate viral gene expression. Furthermore, knockdown of Nup205 resulted in a more than a 4-fold reduction in the replication of wild-type adenovirus. Our data show for first time that Ad5 E4orf4 interacts with and modifies the NPC and that Nup205-E4orf4 binding is required for normal regulation of viral gene expression and viral replication. IMPORTANCE: Nuclear pore complexes (NPCs) are highly regulated conduits in the nuclear membrane that control transport of macromolecules between the nucleus and cytoplasm. Viruses that replicate in the nucleus must negotiate the NPC during nuclear entry, and viral DNA, mRNA, and proteins must then be exported from the nucleus. Several types of viruses restructure the NPC to facilitate replication, and the current study shows that adenovirus type 5 (Ad5) utilizes a novel mechanism to modify NPC function. We demonstrate that a subunit of the NPC, Nup205, is a phosphoprotein that is actively dephosphorylated by the Ad5-encoded protein E4orf4. Moreover, Nup205 is required by Ad5 to regulate viral gene expression and efficient viral replication. Nup205 is a nonstructural subunit that is responsible for the gating functions of the NPC, and this study suggests for the first time that the NPC is regulated by phosphorylation both during normal physiology and viral infection.


Assuntos
Adenovírus Humanos/fisiologia , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Virais/metabolismo , Adenovírus Humanos/genética , Linhagem Celular , Humanos , Imunoprecipitação , Espectrometria de Massas , Complexos Multienzimáticos , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Replicação Viral
8.
Nanotechnology ; 26(28): 285101, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26111959

RESUMO

This study examines the effects of polyethylene glycol (PEG) and peptide conjugation on the biodistribution of ultrasmall (2.7 nm) gold nanoparticles in mice bearing B16 melanoma allografts. Nanoparticles were delivered intravenously, and biodistribution was measured at specific timepoints by organ digestion and inductively coupled plasma mass spectrometry. All major organs were examined. Two peptides were tested: the cyclic RGD peptide (cRGD, which targets integrins); and a recently described peptide derived from the myxoma virus. We found the greatest specific tumor delivery using the myxoma peptide, with or without PEGylation. Un-PEGylated cRGD performed poorly, but PEGylated RGD showed a significant transient collection in the tumor. Liver and kidney were the primary targets of all constructs. None of the particles were able to cross the blood-brain barrier. Although it was able to deliver Au to B16 cells, the myxoma peptide did not show any cytotoxic activity against these cells, in contrast to previous reports. These results indicate that the effect of passive targeting by PEGylation and active targeting by peptides can be independent or combined, and that they should be evaluated on a case-by-case basis when designing new nanosystems for targeted therapies. Both myxoma peptide and cRGD should be considered for specific targeting to melanoma, but a thorough investigation of the cytotoxicity of the myxoma peptide to different cell lines remains to be performed.


Assuntos
Ouro/química , Melanoma Experimental/química , Nanopartículas Metálicas/química , Peptídeos/farmacocinética , Aloenxertos , Animais , Líquidos Corporais/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Ouro/farmacocinética , Camundongos , Myxoma virus/química , Peptídeos/química , Peptídeos Cíclicos/farmacocinética , Polietilenoglicóis/química , Distribuição Tecidual
9.
Nanomedicine ; 11(6): 1365-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25888279

RESUMO

Intratumoral injection of ultra-small gold nanoparticles (AuNPs) conjugated to doxorubicin (Au-Dox) is effective against both murine B16 and human SK-MEL-28 tumors in mice. Au-Dox suppresses growth of B16 tumors in immunocompetent mice by >70% for at least 19 days. In SK-MEL-28 xenografts, Au-Dox suppresses tumor growth almost completely for >13 weeks, while tumors treated with Dox alone demonstrate accelerated growth after 10 weeks. Histological analysis shows significant apoptosis and necrosis in Au-Dox treated tumors. Intratumoral injection is significantly more effective than intravenous injection, which leads to significant accumulation in liver and kidney with sub-therapeutic concentrations of Au-Dox. However, IV injection does not lead to significant damage in non-target organs, so improved targeting should permit this mode of delivery with little risk of systemic toxicity. The current construct is suitable for tumors accessible to intratumoral injection and represents a viable approach doxorubicin-resistant solid tumors. FROM THE CLINICAL EDITOR: Drug resistance is a significant problem in the fight against cancer. The authors describe a new approach in combating drug resistance in tumor cells by conjugating ultrasmall gold nanoparticles to doxorubicin. They tested the efficacy in in-vivo models using two melanoma cell lines. The promising results obtained from intra-tumoral injections contribute a way in future drug designs showing that conjugation to nanoparticles could lead to more effective and synergistic killing of tumor cells.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Ouro/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos , Ouro/administração & dosagem , Ouro/farmacocinética , Xenoenxertos , Marcação In Situ das Extremidades Cortadas , Injeções Intralesionais , Camundongos , Distribuição Tecidual
10.
J Virol ; 87(24): 13168-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24067978

RESUMO

The adenovirus E4orf4 protein selectively kills human cancer cells independently of p53 and thus represents a potentially promising tool for the development of novel antitumor therapies. Previous studies suggested that E4orf4 induces an arrest or a delay in mitosis and that both this effect and subsequent cell death rely largely on an interaction with the B55 regulatory subunit of protein phosphatase 2A. In the present report, we show that the death of human H1299 lung carcinoma cells induced by expression of E4orf4 is typified not by an accumulation of cells arrested in mitosis but rather by the presence of both tetraploid and diploid cells that are arrested in G1 because they are unable to initiate DNA synthesis. We believe that these E4orf4-expressing cells eventually die by various processes, including those resulting from mitotic catastrophe.


Assuntos
Infecções por Adenovirus Humanos/genética , Infecções por Adenovirus Humanos/fisiopatologia , Adenovírus Humanos/metabolismo , Apoptose , Replicação do DNA , Pontos de Checagem da Fase G1 do Ciclo Celular , Proteína Supressora de Tumor p53/deficiência , Proteínas Virais/metabolismo , Infecções por Adenovirus Humanos/metabolismo , Adenovírus Humanos/genética , Animais , Morte Celular , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Diploide , Técnicas de Inativação de Genes , Humanos , Tetraploidia , Proteína Supressora de Tumor p53/genética , Proteínas Virais/genética
11.
Viruses ; 15(2)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36851572

RESUMO

In the 1990s, adenovirus became one of the first virus types to be genetically engineered to selectively destroy cancer cells. In the intervening years, the field of "oncolytic viruses" has slowly progressed and culminated in 2015 with the FDA approval of Talimogene laherparepvec, a genetically engineered herpesvirus, for the treatment of metastatic melanoma. Despite the slower progress in translating oncolytic adenovirus to the clinic, interest in the virus remains strong. Among all the clinical trials currently using viral oncolytic agents, the largest proportion of these are using recombinant adenovirus. Many trials are currently underway to use oncolytic virus in combination with immune checkpoint inhibitors (ICIs), and early results using oncolytic adenovirus in this manner are starting to show promise. Many of the existing strategies to engineer adenoviruses were designed to enhance selective tumor cell replication without much regard to interactions with the immune system. Adenovirus possesses a wide range of viral factors to attenuate both innate anti-viral pathways and immune cell killing. In this review, we summarize the strategies of oncolytic adenoviruses currently in clinical trials, and speculate how the mutational backgrounds of these viruses may impact upon the efficacy of these agents in oncolytic and immunotherapy. Despite decades of research on human adenoviruses, the interactions that these viruses have with the immune system remains one of the most understudied aspects of the virus and needs to be improved to rationally design the next generation of engineered viruses.


Assuntos
Adenovírus Humanos , Melanoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Adenoviridae/genética , Vírus Oncolíticos/genética
12.
PLoS One ; 18(7): e0288622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37463144

RESUMO

Phosphatase and tensin homolog (PTEN) mutation is common in prostate cancer during progression to metastatic and castration resistant forms. We previously reported that loss of PTEN function in prostate cancer leads to increased expression and secretion of the Prorenin Receptor (PRR) and its soluble processed form, the soluble Prorenin Receptor (sPRR). PRR is an essential factor required for proper assembly and activity of the vacuolar-ATPase (V-ATPase). The V-ATPase is a rotary proton pump required for the acidification of intracellular vesicles including endosomes and lysosomes. Acidic vesicles are involved in a wide range of cancer related pathways such as receptor mediated endocytosis, autophagy, and cell signalling. Full-length PRR is cleaved at a conserved consensus motif (R-X-X-R↓) by a member of the proprotein convertase family to generate sPRR, and a smaller C-terminal fragment, designated M8.9. It is unclear which convertase processes PRR in prostate cancer cells and how processing affects V-ATPase activity. In the current study we show that PRR is predominantly cleaved by PACE4, a proprotein convertase that has been previously implicated in prostate cancer. We further demonstrate that PTEN controls PRR processing in mouse tissue and controls PACE4 expression in prostate cancer cells. Furthermore, we demonstrate that PACE4 cleavage of PRR is needed for efficient V-ATPase activity and prostate cancer cell growth. Overall, our data highlight the importance of PACE4-mediated PRR processing in normal physiology and prostate cancer tumorigenesis.


Assuntos
Neoplasias da Próstata , ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Masculino , Camundongos , Pró-Proteína Convertases/metabolismo , Receptor de Pró-Renina , Neoplasias da Próstata/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
13.
J Virol ; 85(23): 12638-49, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937663

RESUMO

The chicken anemia virus (CAV) protein Apoptin is a small, 13.6-kDa protein that has the intriguing activity of inducing G(2)/M arrest and apoptosis specifically in cancer cells by a mechanism that is independent of p53. The activity of Apoptin is regulated at the level of localization. Whereas Apoptin is cytoplasmic in primary cells and does not affect cell growth, in transformed cells it localizes to the nucleus, where it induces apoptosis. The properties of cancer cells that are responsible for activating the proapoptotic activities of Apoptin remain unclear. In the current study, we show that DNA damage response (DDR) signaling is required to induce Apoptin nuclear localization in primary cells. Induction of DNA damage in combination with Apoptin expression was able to induce apoptosis in primary cells. Conversely, chemical or RNA interference (RNAi) inhibition of DDR signaling by ATM and DNA-dependent protein kinase (DNA-PK) was sufficient to cause Apoptin to localize in the cytoplasm of transformed cells. Furthermore, the nucleocytoplasmic shuttling activity of Apoptin is required for DDR-induced changes in localization. Interestingly, nuclear localization of Apoptin in primary cells was able to inhibit the formation of DNA damage foci containing 53BP1. Apoptin has been shown to bind and inhibit the anaphase-promoting complex/cyclosome (APC/C). We observe that Apoptin is able to inhibit formation of DNA damage foci by targeting the APC/C-associated factor MDC1 for degradation. We suggest that these results may point to a novel mechanism of DDR inhibition during viral infection.


Assuntos
Apoptose , Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dano ao DNA/efeitos dos fármacos , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Adenoviridae/genética , Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Western Blotting , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Vírus da Anemia da Galinha , Citoplasma/efeitos dos fármacos , Dano ao DNA/genética , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofluorescência , Humanos , Imunoprecipitação , Pulmão/citologia , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Frações Subcelulares
14.
Cancer Res ; 82(19): 3499-3515, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35913887

RESUMO

CDC20 is a coactivator of the anaphase promoting complex/cyclosome (APC/C) and is essential for mitotic progression. APC/CCDC20 is inhibited by the spindle assembly checkpoint (SAC), which prevents premature separation of sister chromatids and aneuploidy in daughter cells. Although overexpression of CDC20 is common in many cancers, oncogenic mutations have never been identified in humans. Using whole-exome sequencing, we identified heterozygous missense CDC20 variants (L151R and N331K) that segregate with ovarian germ cell tumors in two families. Functional characterization showed these mutants retain APC/C activation activity but have impaired binding to BUBR1, a component of the SAC. Expression of L151R and N331K variants promoted mitotic slippage in HeLa cells and primary skin fibroblasts derived from carriers. Generation of mice carrying the N331K variant using CRISPR-Cas9 showed that, although homozygous N331K mice were nonviable, heterozygotes displayed accelerated oncogenicity of Myc-driven cancers. These findings highlight an unappreciated role for CDC20 variants as tumor-promoting genes. SIGNIFICANCE: Two germline CDC20 missense variants that segregate with cancer in two families compromise the spindle assembly checkpoint and lead to aberrant mitotic progression, which could predispose cells to transformation. See related commentary by Villarroya-Beltri and Malumbres, p. 3432.


Assuntos
Neoplasias , Fuso Acromático , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Germinativas/metabolismo , Células HeLa , Humanos , Camundongos , Mitose/genética , Neoplasias/metabolismo , Ligação Proteica , Fuso Acromático/metabolismo
15.
J Virol ; 83(4): 1689-99, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19073741

RESUMO

The human adenovirus type 5 (Ad5) E4orf4 product has been studied extensively although in most cases as expressed from vectors in the absence of other viral products. Thus, relatively little is known about its role in the context of an adenovirus infection. Although considerable earlier work had indicated that the E4orf4 protein is not essential for replication, a recent study using dl359, an Ad5 mutant believed to produce a nonfunctional E4orf4 protein, suggested that E4orf4 is essential for virus growth in primary small-airway epithelial cells (C. O'Shea, et al., EMBO J. 24:1211-1221, 2005). Hence, to examine further the role of E4orf4 during virus infection, we generated for the first time a set of E4orf4 virus mutants in a common Ad5 genetic background. Such mutant viruses included those that express E4orf4 proteins containing various individual point mutations, those defective entirely in E4orf4 expression, and a mutant expressing wild-type E4orf4 fused to the green fluorescent protein. E4orf4 protein was found to localize primarily in nuclear structures shown to be viral replication centers, in nucleoli, and in perinuclear bodies. Importantly, E4orf4 was shown not to be essential for virus growth in either human tumor or primary cells, at least in tissue culture. Unlike E4orf4-null virus, mutant dl359 appeared to exhibit a gain-of-function phenotype that impairs virus growth. The dl359 E4orf4 protein, which contains a large in-frame internal deletion, clustered in aggregates enriched in Hsp70 and proteasome components. In addition, the late viral mRNAs produced by dl359 accumulated abnormally in a nuclear punctate pattern. Altogether, our results indicate that E4orf4 protein is not essential for virus growth in culture and that expression of the dl359 E4orf4 product interferes with viral replication, presumably through interactions with structures in the nucleus.


Assuntos
Adenovírus Humanos/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Linhagem Celular , Nucléolo Celular/química , Núcleo Celular/química , Citoplasma/química , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/genética
16.
Pathogens ; 9(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316372

RESUMO

Apoptin is the Vp3 protein of chicken anemia virus (CAV), which infects the thymocytes and erythroblasts in young chickens, causing chicken infectious anemia and immunosuppression. Apoptin is highly studied for its ability to selectively induce apoptosis in human tumor cells and, thus, is a protein of interest in anti-tumor therapy. CAV apoptin is known to localize to different subcellular compartments in transformed and non-transformed cells, depending on the DNA damage response, and the phosphorylation of several identified threonine residues. In addition, apoptin interacts with molecular machinery such as the anaphase promoting complex/cyclosome (APC/C) to inhibit the cell cycle and induce arrest in G2/M phase. While these functions of apoptin contribute to the tumor-selective effect of the protein, they also provide an important fundamental framework to apoptin's role in viral infection, pathogenesis, and propagation. Here, we reviewed how the regulation, localization, and functions of apoptin contribute to the viral life cycle and postulated its importance in efficient replication of CAV. A model of the molecular biology of infection is critical to informing our understanding of CAV and other related animal viruses that threaten the agricultural industry.

17.
Cell Rep ; 33(1): 108230, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027666

RESUMO

mTOR is a serine/threonine kinase and a master regulator of cell growth and proliferation. Raptor, a scaffolding protein that recruits substrates to mTOR complex 1 (mTORC1), is known to be phosphorylated during mitosis, but the significance of this phosphorylation remains largely unknown. Here we show that raptor expression and mTORC1 activity are dramatically reduced in cells arrested in mitosis. Expression of a non-phosphorylatable raptor mutant reactivates mTORC1 and significantly reduces cytotoxicity of the mitotic poison Taxol. This effect is mediated via degradation of PDCD4, a tumor suppressor protein that inhibits eIF4A activity and is negatively regulated by the mTORC1/S6K pathway. Moreover, pharmacological inhibition of eIF4A is able to enhance the effects of Taxol and restore sensitivity in Taxol-resistant cancer cells. These findings indicate that the mTORC1/S6K/PDCD4/eIF4A axis has a pivotal role in the death versus slippage decision during mitotic arrest and may be exploited clinically to treat tumors resistant to anti-mitotic agents.


Assuntos
Mitose/genética , Serina-Treonina Quinases TOR/metabolismo , Células HeLa , Humanos , Resultado do Tratamento
18.
Mol Cancer Res ; 18(10): 1477-1490, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32587106

RESUMO

PTEN loss-of-function contributes to hyperactivation of the PI3K pathway and to drug resistance in breast cancer. Unchecked PI3K pathway signaling increases activation of the mechanistic target of rapamycin complex 1 (mTORC1), which promotes tumorigenicity. Several studies have suggested that vacuolar (H+)-ATPase (V-ATPase) complex activity is regulated by PI3K signaling. In this study, we showed that loss of PTEN elevated V-ATPase activity. Enhanced V-ATPase activity was mediated by increased expression of the ATPase H+ transporting accessory protein 2 (ATP6AP2), also known as the prorenin receptor (PRR). PRR is cleaved into a secreted extracellular fragment (sPRR) and an intracellular fragment (M8.9) that remains associated with the V-ATPase complex. Reduced PTEN expression increased V-ATPase complex activity in a PRR-dependent manner. Breast cancer cell lines with reduced PTEN expression demonstrated increased PRR expression. Similarly, PRR expression became elevated upon PTEN deletion in a mouse model of breast cancer. Interestingly, concentration of sPRR was elevated in the plasma of patients with breast cancer and correlated with tumor burden in HER2-enriched cancers. Moreover, PRR was essential for proper HER2 receptor expression, localization, and signaling. PRR knockdown attenuated HER2 signaling and resulted in reduced Akt and ERK 1/2 phosphorylation, and in lower mTORC1 activity. Overall, our study demonstrates a mechanism by which PTEN loss in breast cancer can potentiate multiple signaling pathways through upregulation of the V-ATPase complex. IMPLICATIONS: Our study contributed to the understanding of the role of the V-ATPase complex in breast cancer cell tumorigenesis and provided a potential biomarker in breast cancer.


Assuntos
Neoplasias da Mama/genética , Oncogenes/genética , PTEN Fosfo-Hidrolase/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Transdução de Sinais , Transfecção
19.
J Virol ; 82(1): 529-37, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17942546

RESUMO

Cell cycle dysregulation upon human cytomegalovirus (HCMV) infection of human fibroblasts is associated with the inactivation of the anaphase-promoting complex (APC), a multisubunit E3 ubiquitin ligase, and accumulation of its substrates. Here, we have further elucidated the mechanism(s) by which HCMV-induced inactivation of the APC occurs. Our results show that Cdh1 accumulates in a phosphorylated form that may prevent its association with and activation of the APC. The accumulation of Cdh1, but not its phosphorylation, appears to be cyclin-dependent kinase dependent. The lack of an association of exogenously added Cdh1 with the APC from infected cells indicates that the core APC also may be impaired. This is further supported by an examination of the localization and composition of the APC. Coimmunoprecipitation studies show that both Cdh1 and the subunit APC1 become dissociated from the complex. In addition, immunofluorescence analysis demonstrates that as the infection progresses, several subunits redistribute to the cytoplasm, while APC1 remains nuclear. Dissociation of the core complex itself would account for not only the observed inactivity but also its inability to bind to Cdh1. Taken together, these results illustrate that HCMV has adopted multiple mechanisms to inactivate the APC, which underscores its importance for a productive infection.


Assuntos
Caderinas/metabolismo , Citomegalovirus/fisiologia , Subunidades Proteicas/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Antígenos CD , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Núcleo Celular/química , Células Cultivadas , Citoplasma/química , Fibroblastos/virologia , Humanos , Imunoprecipitação , Microscopia Confocal , Microscopia de Fluorescência , Fosforilação , Ligação Proteica
20.
Oncotarget ; 10(48): 4923-4936, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31452834

RESUMO

Phosphatase and tensin homolog (PTEN) tumor suppressor protein loss is common in prostate cancer (PCa). PTEN loss increases PI3K/Akt signaling, which promotes cell growth and survival. To find secreted biomarkers of PTEN loss, a proteomic screen was used to compare secretomes of cells with and without PTEN expression. We showed that PTEN downregulates Prorenin Receptor (PRR) expression and secretion of soluble Prorenin Receptor (sPRR) in PCa cells and in mouse. PRR is an accessory protein required for assembly of the vacuolar ATPase (V-ATPase) complex. V-ATPase is required for lysosomal acidification, amino acid sensing, efficient mechanistic target of Rapamycin complex 1 (mTORC1) activation, and ß-Catenin signaling. On PCa tissue microarrays, PRR expression displayed a positive correlation with Akt phosphorylation. Moreover, PRR expression was required for proliferation of PCa cells by maintaining V-ATPase function. Further, we provided evidence for a potential clinical role for PRR expression and sPRR concentration in differentiating low from high Gleason grade PCa. Overall, the current study unveils a mechanism by which PTEN can inhibit tumor growth. Lower levels of PRR result in attenuated V-ATPase activity and reduced PCa cell proliferation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA