Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 16(6): e1903897, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961995

RESUMO

There is a crucial need for effective and easily dispersible colloidal microsensors able to detect local pH changes before irreversible damages caused by demineralization, corrosion, or biofilms occur. One class of such microsensors is based on molecular dyes encapsulated or dispersed either in polymer matrices or in liquid systems exhibiting different colors upon pH variations. They are efficient but often rely on sophisticated and costly syntheses, and present significant risks of leakage and photobleaching damages, which is detrimental for mainstream applications. Another approach consists of exploiting the distance-dependent plasmonic properties of metallic nanoparticles. Still, assembling nanoparticles into dispersible colloidal pH-sensitive sensors remains a challenge. Here, it is shown how to combine optically active plasmonic gold nanoparticles and pH-responsive thin shells into "plasmocapsules." Upon pH change, plasmocapsules swell or shrink. Concomitantly, the distance between the gold nanoparticles embedded in the polymeric matrix varies, resulting in an unambiguous color change. Billions of micron-size sensors can thus be easily fabricated. They are nonintrusive, reusable, and sense local pH changes. Each plasmocapsule is an independent reversible microsensor over a large pH range. Finally, their potential use for the detection of bacterial growth is demonstrated, thus proving that plasmocapsules are a new class of sensing materials.


Assuntos
Colorimetria , Ouro , Nanopartículas Metálicas , Colorimetria/instrumentação , Colorimetria/métodos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA