Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 236(2): 399-412, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35852010

RESUMO

Litter decomposition releases nutrients beneficial to plants but also induces phytotoxicity. Phytotoxicity can result from either labile allelopathic compounds or species specific and caused by conspecific DNA. Aquatic plants in flowing water generally do not suffer phytotoxicity because litter is regularly removed. In stagnant water or in litter packs an impact on root functionality can occur. So far, studies on water plant roots have been carried out in laboratory and never in field conditions. The effect of conspecific vs heterospecific litter and purified DNA were assessed on aquatic roots of the riparian woody species Alnus glutinosa L. using a novel method, using closed and open plastic tubes fixed to single roots in the field with closed tubes analogous to stagnant water. Four fresh and four decomposed litter types were used and analysed on extractable C, cellulose, lignin, N content and using 13 C-CPMAS NMR spectroscopy. Inhibitory effects were observed with fresh litter in closed systems, with a positive correlation with extractable C and negative with lignin and lignin : N ratio. Alnus self-DNA, but not heterologous one, caused acute toxic effects in the closed system. Our results demonstrate the first field-based evidence for self-DNA inhibition as causal factor of negative feedback between plants and substrate.


Assuntos
Alnus , Ecossistema , Lignina , Folhas de Planta/química , Plantas/química , Plásticos/análise , Solo/química , Água/análise
2.
Plant J ; 100(6): 1163-1175, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436858

RESUMO

During meiosis, recombination ensures allelic exchanges through crossovers (COs) between the homologous chromosomes. Advances in our understanding of the rules of COs have come from studies of mutations including structural chromosomal rearrangements that, when heterozygous, are known to impair COs in various organisms. In this work, we investigate the effect of a large heterozygous pericentric inversion on male and female recombination in Arabidopsis. The inversion was discovered in the Atmcc1 mutant background and was characterized through genetic and next-generation sequencing analysis. Reciprocal backcross populations, each consisting of over 400 individuals, obtained from the mutant and the wild type, both crossed with Landsberg erecta, were analyzed genome-wide by 143 single-nucleotide polymorphisms. The negative impact of inversion became evident in terms of CO loss in the rearranged chromosome in both male and female meiosis. No single-CO event was detected within the inversion, consistent with a post-meiotic selection operating against unbalanced gametes. Cytological analysis of chiasmata in F1 plants confirmed that COs were reduced in male meiosis in the chromosome with inversion. Crossover suppression on the rearranged chromosome is associated with a significant increase of COs in the other chromosomes, thereby maintaining unchanged the number of COs per cell. The CO pattern observed in our study is consistent with the interchromosomal (IC) effect as first described in Drosophila. In contrast to male meiosis, in female meiosis no IC effect is visible. This may be related to the greater strength of interference that constrains the CO number in excess of the minimum value imposed by CO assurance in Arabidopsis female meiosis.


Assuntos
Arabidopsis/genética , Inversão Cromossômica , Cromossomos de Plantas/genética , Troca Genética , Heterozigoto , Recombinação Genética , Mapeamento Cromossômico , Genes de Plantas , Genoma de Planta , Meiose/genética , Pólen , Polimorfismo de Nucleotídeo Único
3.
Chromosoma ; 125(2): 301-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26801812

RESUMO

Genome architecture is shaped by gene-rich and repeat-rich regions also known as euchromatin and heterochromatin, respectively. Under normal conditions, the repeat-containing regions undergo little or no meiotic crossover (CO) recombination. COs within repeats are risky for the genome integrity. Indeed, they can promote non-allelic homologous recombination (NAHR) resulting in deleterious genomic rearrangements associated with diseases in humans. The assembly of heterochromatin is driven by the combinatorial action of many factors including histones, their modifications, and DNA methylation. In this review, we discuss current knowledge dealing with the epigenetic signatures of the major repeat regions where COs are suppressed. Then we describe mutants for epiregulators of heterochromatin in different organisms to find out how chromatin structure influences the CO rate and distribution.


Assuntos
Troca Genética , Recombinação Genética , Animais , Metilação de DNA , Epigenômica , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Meiose
4.
New Phytol ; 205(3): 1195-1210, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25354164

RESUMO

Plant-soil negative feedback (NF) is recognized as an important factor affecting plant communities. The objectives of this work were to assess the effects of litter phytotoxicity and autotoxicity on root proliferation, and to test the hypothesis that DNA is a driver of litter autotoxicity and plant-soil NF. The inhibitory effect of decomposed litter was studied in different bioassays. Litter biochemical changes were evaluated with nuclear magnetic resonance (NMR) spectroscopy. DNA accumulation in litter and soil was measured and DNA toxicity was assessed in laboratory experiments. Undecomposed litter caused nonspecific inhibition of root growth, while autotoxicity was produced by aged litter. The addition of activated carbon (AC) removed phytotoxicity, but was ineffective against autotoxicity. Phytotoxicity was related to known labile allelopathic compounds. Restricted (13) C NMR signals related to nucleic acids were the only ones negatively correlated with root growth on conspecific substrates. DNA accumulation was observed in both litter decomposition and soil history experiments. Extracted total DNA showed evident species-specific toxicity. Results indicate a general occurrence of litter autotoxicity related to the exposure to fragmented self-DNA. The evidence also suggests the involvement of accumulated extracellular DNA in plant-soil NF. Further studies are needed to further investigate this unexpected function of extracellular DNA at the ecosystem level and related cellular and molecular mechanisms.


Assuntos
DNA de Plantas/toxicidade , Espaço Extracelular/química , Retroalimentação Fisiológica , Folhas de Planta/química , Solo/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Hidrogênio/metabolismo , Laboratórios , Modelos Lineares , Medicago/metabolismo , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento , Especificidade da Espécie
5.
New Phytol ; 206(1): 127-132, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25628124

RESUMO

Self-inhibition of growth has been observed in different organisms, but an underlying common mechanism has not been proposed so far. Recently, extracellular DNA (exDNA) has been reported as species-specific growth inhibitor in plants and proposed as an explanation of negative plant-soil feedback. In this work the effect of exDNA was tested on different species to assess the occurrence of such inhibition in organisms other than plants. Bioassays were performed on six species of different taxonomic groups, including bacteria, fungi, algae, plants, protozoa and insects. Treatments consisted in the addition to the growth substrate of conspecific and heterologous DNA at different concentration levels. Results showed that treatments with conspecific DNA always produced a concentration dependent growth inhibition, which instead was not observed in the case of heterologous DNA. Reported evidence suggests the generality of the observed phenomenon which opens new perspectives in the context of self-inhibition processes. Moreover, the existence of a general species-specific biological effect of exDNA raises interesting questions on its possible involvement in self-recognition mechanisms. Further investigation at molecular level will be required to unravel the specific functioning of the observed inhibitory effects.


Assuntos
Arabidopsis/genética , DNA/farmacologia , Plantas/efeitos dos fármacos , Sarcofagídeos/efeitos dos fármacos , Animais , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Ecossistema , Espaço Extracelular/genética , Physarum polycephalum/efeitos dos fármacos , Physarum polycephalum/crescimento & desenvolvimento , Sarcofagídeos/crescimento & desenvolvimento , Scenedesmus/efeitos dos fármacos , Scenedesmus/crescimento & desenvolvimento , Solo , Especificidade da Espécie , Trichoderma/efeitos dos fármacos , Trichoderma/crescimento & desenvolvimento
6.
Plant Physiol ; 163(1): 431-40, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23878078

RESUMO

Histone modifications are involved in the regulation of many processes in eukaryotic development. In this work, we provide evidence that AtHDA7, a HISTONE DEACETYLASE (HDAC) of the Reduced Potassium Dependency3 (RPD3) superfamily, is crucial for female gametophyte development and embryogenesis in Arabidopsis (Arabidopsis thaliana). Silencing of AtHDA7 causes degeneration of micropylar nuclei at the stage of four-nucleate embryo sac and delay in the progression of embryo development, thereby bringing the seed set down in the Athda7-2 mutant. Furthermore, AtHDA7 down- and up-regulation lead to a delay of growth in postgermination and later developmental stages. The Athda7-2 mutation that induces histone hyperacetylation significantly increases the transcription of other HDACs (AtHDA6 and AtHDA9). Moreover, silencing of AtHDA7 affects the expression of ARABIDOPSIS HOMOLOG OF SEPARASE (AtAESP), previously demonstrated to be involved in female gametophyte and embryo development. However, chromatin immunoprecipitation analysis with acetylated H3 antibody provided evidence that the acetylation levels of H3 at AtAESP and HDACs does not change in the mutant. Further investigations are essential to ascertain the mechanism by which AtHDA7 affects female gametophyte and embryo development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Histona Desacetilases/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento
7.
Biomolecules ; 14(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38927066

RESUMO

The cell cycle and the transcriptome dynamics of yeast exposed to extracellular self-DNA during an aerobic batch culture on glucose have been investigated using cytofluorimetric and RNA-seq analyses. In parallel, the same study was conducted on yeast cells growing in the presence of (heterologous) nonself-DNA. The self-DNA treatment determined a reduction in the growth rate and a major elongation of the diauxic lag phase, as well as a significant delay in the achievement of the stationary phase. This was associated with significant changes in the cell cycle dynamics, with slower exit from the G0 phase, followed by an increased level of cell percentage in the S phase, during the cultivation. Comparatively, the exposure to heterologous DNA did not affect the growth curve and the cell cycle dynamics. The transcriptomic analysis showed that self-DNA exposure produced a generalized downregulation of transmembrane transport and an upregulation of genes associated with sulfur compounds and the pentose phosphate pathway. Instead, in the case of the nonself treatment, a clear response to nutrient deprivation was detected. Overall, the presented findings represent further insights into the complex functional mechanisms of self-DNA inhibition.


Assuntos
Ciclo Celular , Saccharomyces cerevisiae , Transcriptoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ciclo Celular/genética , Técnicas de Cultura Celular por Lotes , Regulação Fúngica da Expressão Gênica , DNA/metabolismo , Glucose/metabolismo
8.
Microb Cell ; 10(12): 292-295, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38053574

RESUMO

Extracellular DNA (exDNA) can be actively released by living cells and different putative functions have been attributed to it. Further, homologous exDNA has been reported to exert species-specific inhibitory effects on several organisms. Here, we demonstrate by different experimental evidence, including 1H-NMR metabolomic fingerprint, that the growth rate decline in Saccharomyces cerevisiae fed-batch cultures is determined by the accumulation of exDNA in the medium. Sequencing of such secreted exDNA represents a portion of the entire genome, showing a great similarity with extrachromosomal circular DNA (eccDNA) already reported inside yeast cells. The recovered DNA molecules were mostly single strands and specifically associated to the yeast metabolism displayed during cell growth. Flow cytometric analysis showed that the observed growth inhibition by exDNA corresponded to an arrest in the S phase of the cell cycle. These unprecedented findings open a new scenario on the functional role of exDNA produced by living cells.

9.
Bioorg Med Chem ; 20(10): 3280-6, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22507208

RESUMO

A phytochemical analysis of Aesculus pavia has led to the isolation of eight novel triterpenoid saponins, based on oleane type skeleton and named paviosides A-H (1a, 1b-4a, 4b). On the basis of chemical, and 2D NMR and mass spectrometry data, the structures of the new compounds were elucidated as 3-O-[ß-D-xylopyranosyl (1 → 2)] [-ß-d-glucopyranosyl (1 → 4)]-ß-D-glucopyranosiduronic acid 21-tigloyl-22-acetyl barringtogenol C (1a), 3-O-[ß-D-xylopyranosyl (1 → 2)] [-ß-D-glucopyranosyl (1 → 4)]-ß-D-glucopyranosiduronic acid 21-angeloyl-22-acetyl barringtogenol C (1b), 3-O-[ß-D-xylopyranosyl (1 → 2)] [-ß-D-galactopyranosyl (1 → 4)]-ß-D-glucopyranosiduronic acid 21-tigloyl-22-acetyl barringtogenol C (2a), 3-O-[ß-D-xylopyranosyl (1 → 2)] [-ß-D-galactopyranosyl (1 → 4)]-ß-D-glucopyranosiduronic acid 21-angeloyl-22-acetyl barringtogenol C (2b), 3-O-[ß-D-xylopyranosyl (1 → 2)] [-ß-D-xylopyranosyl (1 → 4)]-ß-D-glucopyranosiduronic acid 21-tigloyl-22-acetyl barringtogenol C (3a), 3-O-[ß-D-xylopyranosyl (1 → 2)] [-ß-D-xylopyranosyl (1 → 4)]-ß-d-glucopyranosiduronic acid 21-angeloyl-22-acetyl barringtogenol C (3b), 3-O-[ß-D-xylopyranosyl (1 → 2)] [-ß-D-xylopyranosyl (1 → 4)]-ß-D-glucopyranosiduronic acid 21-tigloyl-22-acetyl protoaescigenin (4a), and 3-O-[ß-D-xylopyranosyl (1 → 2)] [-ß-D-xylopyranosyl (1 → 4)]-ß-D-glucopyranosiduronic acid 21-angeloyl-22-acetyl protoaescigenin (4b). The compounds showed cytotoxic activity on J-774, murine monocyte/macrophage, and WEHI-164, murine fibrosarcoma, cell lines. Among them, paviosides E-H (3a, 3b and 4a, 4b) showed higher activity with values ranging from 2.1 to 3.6 µg/mL. Structure-activity relationship studies indicated the positive effect on the activity of xylose unit in the place of glucose, while a little detrimental effect is observed when glucose is substituted by galactose. The aglycone structure and the presence of a tigloyl or an angeloyl group at C-21 do not affect significantly the inhibitory activity on both tested cell lines.


Assuntos
Aesculus/química , Sobrevivência Celular/efeitos dos fármacos , Componentes Aéreos da Planta/química , Extratos Vegetais/toxicidade , Saponinas/química , Saponinas/toxicidade , Animais , Sequência de Carboidratos , Linhagem Celular Tumoral , Fibrossarcoma/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Dados de Sequência Molecular , Ácido Oleanólico/química , Ácido Oleanólico/toxicidade
10.
Plants (Basel) ; 11(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684209

RESUMO

The role of extracellular DNA (exDNA) in soil and aquatic environments was mainly discussed in terms of source of mineral nutrients and of genetic material for horizontal gene transfer. Recently, the self-exDNA (conspecific) has been shown to have an inhibitory effect on the growth of that organism, while the same was not evident for nonself-exDNA (non conspecific). The inhibitory effect of self-exDNA was proposed as a universal phenomenon, although evidence is mainly reported for terrestrial species. The current study showed the inhibitory effect of self-exDNA also on photosynthetic aquatic microorganisms. We showed that self-exDNA inhibits the growth of the microalgae Chlamydomonas reinhardtii and Nannochloropsis gaditana, a freshwater and a marine species, respectively. In addition, the study also revealed the phenotypic effects post self-exDNA treatments. Indeed, Chlamydomonas showed the formation of peculiar heteromorphic aggregates of palmelloid cells embedded in an extracellular matrix, favored by the presence of DNA in the environment, that is not revealed after exposure to nonself-exDNA. The differential effect of self and nonself-exDNA on both microalgae, accompanied by the inhibitory growth effect of self-exDNA are the first pieces of evidence provided for species from aquatic environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA