Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Biol Toxicol ; 38(3): 531-551, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34455488

RESUMO

Diabetes mellitus (DM) is a metabolic syndrome, caused by insufficient insulin secretion or insulin resistance (IR). DM enhances oxidative stress and induces mitochondrial function in different kinds of cell types, including pancreatic ß-cells. Our previous study has showed phosphocreatine (PCr) can advance the mitochondrial function through enhancing the oxidative phosphorylation and electron transport ability in mitochondria damaged by methylglyoxal (MG). Our aim was to explore the potential role of PCr as a molecule to protect mitochondria from diabetes-induced pancreatic ß-cell injury with insulin secretion deficiency or IR through dual AKT/IRS-1/GSK-3ß and STAT3/Cyclophilin D (Cyp-D) signaling pathways. MG-induced INS-1 cell viability, apoptosis, mitochondrial division and fusion, the morphology, and function of mitochondria were suppressed. Flow cytometry was used to detect the production of intracellular reactive oxygen species (ROS) and the changes of intracellular calcium, and the respiratory function was measured by oxygraph-2k. The expressions of AKT, IRS-1, GSK-3ß, STAT3, and Cyp-D were detected using Western blot. The result showed that the oxidative stress-related kinases were significantly restored to the normal level after the pretreatment with PCr. Moreover, PCr pretreatment significantly inhibited cell apoptosis, decreased intracellular calcium, and ROS production, and inhibited mitochondrial division and fusion, and increased ATP synthesis damaged by MG in INS-1 cells. In addition, pretreatment with PCr suppressed Cytochrome C, p-STAT3, and Cyp-D expressions, while increased p-AKT, p-IRS-1, p-GSK-3ß, caspase-3, and caspase-9 expressions. In conclusion, PCr has protective effect on INS-1 cells in vitro and in vivo, relying on AKT mediated STAT3/ Cyp-D pathway to inhibit oxidative stress and restore mitochondrial function, signifying that PCr might become an emerging candidate for the cure of diabetic pancreatic cancer ß-cell damage.


Assuntos
Cálcio , Proteínas Proto-Oncogênicas c-akt , Apoptose , Cálcio/metabolismo , Peptidil-Prolil Isomerase F , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Fosfocreatina/metabolismo , Fosfocreatina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
2.
Pharmacol Res ; 161: 105130, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32818653

RESUMO

SPINK1 overexpression promotes cancer cell aggressiveness and confers chemo-resistance to multiple drugs in pancreatic cancer. Oleanolic acid (OA) derivatives possess active effects against different cancers. Here we report the effect of K73-03, a new novel OA derivative, against pancreatic cancer through mitochondrial dysfunction via miR-421/SPINK1 regulation. We examined the binding ability of miR-421 with SPINK1-3'UTR Luciferase reporter assays. Moreover, miR-421/SPINK1 expressions in pancreatic cancer, with or without K73-03 treatment, were evaluated. Cells viability, migration, autophagy, mitochondrial function and apoptosis were examined with or without K73-03 treatment. We established that the K73-03 effect on the miR-421 that plays a crucial role in the regulation of SPINK1 in pancreatic cancer. Our findings indicated that K73-03 inhibited the mitochondrial function that led to inducing autophagy and apoptosis through epigenetic SPINK1 down-regulation via miR-421 up-regulation in pancreatic cancer. Furthermore, the inhibition of miR-421 expression in pancreatic cancer cells abolished the efficacy of K73-03 against SPINK1 oncogenic properties. We found an interesting finding that the interaction between miR-421 and SPINK1 is related to mitochondrial function through the effect of K73-03. Further, SPINK1 appear to be the molecular targets of K73-03 especially more than gemcitabine.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , MicroRNAs/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Inibidor da Tripsina Pancreática de Kazal/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antineoplásicos/síntese química , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , MicroRNAs/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Ácido Oleanólico/síntese química , Ácido Oleanólico/química , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Transcrição Gênica , Inibidor da Tripsina Pancreática de Kazal/genética , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Free Radic Biol Med ; 162: 181-190, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131696

RESUMO

Alzheimer (AD) is a degenerative disease that can lead memory loss and behavioral dysfunction. Aß protein and phosphorylation of Tau protein are related to the onset of AD. However, at present, its treatment and drugs are limited. The purpose of our study is to evaluate whether phosphocreatine (PCr) could protect neuronal injury induced by Aß protein in vivo and in vitro through AKT/GSK-3ß/Tau/APP/CDK5 pathways. Differentiated PC-12 cells were cultured with Aß25-35 for 24 h, while the mice were injected with D-Galactose for eight weeks, both of them were pretreated with PCr for 2 h. The results showed PCr could obviously induce cells and hippocampus apoptosis using DAPI and TUNEL. PCr decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and increased the activities of superoxide dismutase (SOD). Besides, the apoptosis pathway was detected using Western blot, showing that PCr could significantly reduce caspase-3, caspase-9, Bcl-2/Bax expression in vivo and in vitro. At the same time, PCr could decreased Ca2+ and apoptosis by Flow Cytometry in PC-12 cells. We observed that the morphological alteration of hippocampus injury was mitigated with the pretreatment of PCr. Furthermore, PCr pretreatment could decrease Aß25-35-induced PC-12 cells apoptosis with APP cDNA transfection, which up-regulated AKT/GSK-3ß/CDK5 pathways and induced Tau phosphorylation. In summary, PCr could reduce Aß25-35 toxicity to protect neuronal cells via AKT/GSK-3ß/CDK5 pathways.


Assuntos
Peptídeos beta-Amiloides , Fármacos Neuroprotetores , Peptídeos beta-Amiloides/toxicidade , Animais , Apoptose , Morte Celular , Glicogênio Sintase Quinase 3 beta/genética , Camundongos , Fármacos Neuroprotetores/farmacologia , Fosfocreatina/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Life Sci ; 242: 117248, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31899224

RESUMO

Diabetic nephropathy is the most common long-term complication of diabetes mellitus. The Methylglyoxal (MGO) production is mainly by metabolic pathways, such as lipolysis and glycolysis, its increases in the DM enhances oxidative stress and plays a crucial role in the diabetic nephrotic pathogenesis. Phosphocreatine (PCr) can improve lipopolysaccharide, ox-LDL-induced atherosclerosis, and alleviate vascular endothelial cell injury in diabetes. The aim of our present study is to examine the potential role of phosphocreatine (PCr) as a molecule protects against diabetes-induced Kidney Injury in-vitro and in-vivo through ERK/Nrf2/HO-1 signaling pathway. NRK-52E cells treatment with PCr obviously suppressed MGO-induced change of viability, apoptosis, coupled with decreased Bax/Bcl-2ratio, casapse-9 and caspase-3expressions. We determined the generation of reactive oxygen species (ROS) using membrane permeable fluorescent probe DCFH-DA as well as intracellular calcium by flow cytometry. ERK, Nrf2 and HO-1 expressions were determined by Western blot. PCr pretreatment significantly returned the oxidative stress enzymes to normal condition in-vitro and in-vivo. PCr pretreatment significantly reduced apoptosis, calcium and ROS production, induced by MGO, in NRK-52E cells. Moreover, pretreatment with PCr significantly inhibited cleaved caspase-3, cleaved caspase-9 and p-ERK expressions, while increased Nrf-2 and HO-1 expressions. Furthermore, PCr pretreatment significantly decreased p-ERK expression of MGO-induced injury in NRK-52E cells transfected with p-ERK cDNA. In conclusion, the renal protective effect of PCr in-vitro and in-vivo depends on suppressing apoptosis and ROS generation through ERK mediated Nrf-2/HO-1 pathway, suggesting that PCr may be a novel therapeutic candidate for the diabetic nephropathy treatment.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Heme Oxigenase (Desciclizante)/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fosfocreatina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/complicações , Citometria de Fluxo , Imunofluorescência , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
5.
Am J Transl Res ; 12(11): 7127-7143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312355

RESUMO

Selaginella tamariscina (ST), a well-known traditional medicinal plant, has been used to treat various cancers, including pancreatic cancer. However, the underlying mechanism by which Selaginellin B, a natural pigment isolated and purified from ST, protects against pancreatic cells has yet to be fully elucidated. In the present study, the biological functions of Selaginellin B were investigated using apoptosis, migration and colony formation assays in ASPC-1 and PANC-1 cells. In addition, apoptosis-associated proteins were detected by Western blotting. Our results demonstrated that Selaginellin B induced apoptosis, as evidenced by the increased cleaved caspase-3 level and Bax/Bcl-2 ratio. Moreover, Selaginellin B led to a marked up-regulation of the ratio of LC3-II/LC3-I in ASPC-1 and PANC-1 cells, respectively. Furthermore, reverse pharmacophore screening, molecular docking and molecular dynamics simulation studies revealed that Janus kinase 2 (JAK2) may be a potential target for Selaginellin B. In summary, the results of the present research have demonstrated that Selaginellin B is an effective anticancer agent against PANC-1 and ASPC-1 cells, and the compound holds great promise for the treatment of pancreatic cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA