Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 11): 2236-47, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26527141

RESUMO

Superoxide reductase (SOR), which is commonly found in prokaryotic organisms, affords protection from oxidative stress by reducing the superoxide anion to hydrogen peroxide. The reaction is catalyzed at the iron centre, which is highly conserved among the prokaryotic SORs structurally characterized to date. Reported here is the first structure of an SOR from a eukaryotic organism, the protozoan parasite Giardia intestinalis (GiSOR), which was solved at 2.0 Å resolution. By collecting several diffraction data sets at 100 K from the same flash-cooled protein crystal using synchrotron X-ray radiation, photoreduction of the iron centre was observed. Reduction was monitored using an online UV-visible microspectrophotometer, following the decay of the 647 nm absorption band characteristic of the iron site in the glutamate-bound, oxidized state. Similarly to other 1Fe-SORs structurally characterized to date, the enzyme displays a tetrameric quaternary-structure arrangement. As a distinctive feature, the N-terminal loop of the protein, containing the characteristic EKHxP motif, revealed an unusually high flexibility regardless of the iron redox state. At variance with previous evidence collected by X-ray crystallography and Fourier transform infrared spectroscopy of prokaryotic SORs, iron reduction did not lead to dissociation of glutamate from the catalytic metal or other structural changes; however, the glutamate ligand underwent X-ray-induced chemical changes, revealing high sensitivity of the GiSOR active site to X-ray radiation damage.


Assuntos
Giardia lamblia/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/efeitos da radiação , Cristalografia por Raios X , Giardia lamblia/química , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Conformação Proteica , Alinhamento de Sequência , Raios X
2.
IUBMB Life ; 63(1): 21-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21280173

RESUMO

Giardia intestinalis is the microaerophilic protozoon causing giardiasis, a common infectious intestinal disease. Giardia possesses an O(2) -scavenging activity likely essential for survival in the host. We report that Giardia trophozoites express the O(2) -detoxifying flavodiiron protein (FDP), detected by immunoblotting, and are able to reduce O(2) to H(2) O rapidly (∼3 µM O(2) × min × 10(6) cells at 37 °C) and with high affinity (C(50) = 3.4 ± 0.7 µM O(2)). Following a short-term (minutes) exposure to H(2) O(2) ≥ 100 µM, the O(2) consumption by the parasites is irreversibly impaired, and the FDP undergoes a degradation, prevented by the proteasome-inhibitor MG132. Instead, H(2) O(2) does not cause degradation or inactivation of the isolated FDP. On the basis of the elevated susceptibility of Giardia to oxidative stress, we hypothesize that the parasite preferentially colonizes the small intestine since, compared with colon, it is characterized by a greater capacity for redox buffering and a lower propensity to oxidative stress.


Assuntos
Giardia lamblia/fisiologia , Intestino Delgado/parasitologia , Estresse Oxidativo , Animais , Peróxido de Hidrogênio/metabolismo , Consumo de Oxigênio
3.
Biochem Biophys Res Commun ; 399(4): 654-8, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20691663

RESUMO

Flavohemoglobins (flavoHbs), commonly found in bacteria and fungi, afford protection from nitrosative stress by degrading nitric oxide (NO) to nitrate. Giardia intestinalis, a microaerophilic parasite causing one of the most common intestinal human infectious diseases worldwide, is the only pathogenic protozoon as yet identified coding for a flavoHb. By NO amperometry we show that, in the presence of NADH, the recombinant Giardia flavoHb metabolizes NO with high efficacy under aerobic conditions (TN=116+/-10s(-1) at 1microM NO, T=37 degrees C). The activity is [O(2)]-dependent and characterized by an apparent K(M,O2)=22+/-7microM. Immunoblotting analysis shows that the protein is expressed at low levels in the vegetative trophozoites of Giardia; accordingly, these cells aerobically metabolize NO with low efficacy. Interestingly, in response to nitrosative stress (24-h incubation with 5mM nitrite) flavoHb expression is enhanced and the trophozoites thereby become able to metabolize NO efficiently, the activity being sensitive to both cyanide and carbon monoxide. The NO-donors S-nitrosoglutathione (GSNO) and DETA-NONOate mimicked the effect of nitrite on flavoHb expression. We propose that physiologically flavoHb contributes to NO detoxification in G. intestinalis.


Assuntos
Giardia lamblia/metabolismo , Hemoglobinas/metabolismo , Óxido Nítrico/metabolismo , Aerobiose , Giardia lamblia/efeitos dos fármacos , Hemoglobinas/genética , Humanos , NAD/metabolismo , Doadores de Óxido Nítrico/farmacologia , Compostos Nitrosos/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Nitrosoglutationa/farmacologia
4.
Arch Biochem Biophys ; 488(1): 9-13, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19545535

RESUMO

Flavodiiron proteins (FDPs) are enzymes identified in prokaryotes and a few pathogenic protozoa, which protect microorganisms by reducing O(2) to H(2)O and/or NO to N(2)O. Unlike most prokaryotic FDPs, the protozoan enzymes from the human pathogens Giardia intestinalis and Trichomonas vaginalis are selective towards O(2). UV/vis and EPR spectroscopy showed that, differently from the NO-consuming bacterial FDPs, the Giardia FDP contains an FMN with reduction potentials for the formation of the single and the two-electron reduced forms very close to each other (E(1)=-66+/-15mV and E(2)=-83+/-15mV), a condition favoring destabilization of the semiquinone radical. Giardia FDP contains also a non-heme diiron site with significantly up-shifted reduction potentials (E(1)=+163+/-20mV and E(2)=+2+/-20mV). These properties are common to the Trichomonas hydrogenosomal FDP, and likely reflect yet undetermined subtle structural differences in the protozoan FDPs, accounting for their marked O(2) specificity.


Assuntos
Giardia lamblia/enzimologia , Ferro/metabolismo , Oxigênio/metabolismo , Proteínas de Protozoários/metabolismo , Absorção , Animais , Coenzimas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Mononucleotídeo de Flavina/metabolismo , Humanos , Oxirredução , Oxigênio/isolamento & purificação , Parasitos/enzimologia , Especificidade por Substrato , Titulometria
5.
Mol Biochem Parasitol ; 206(1-2): 56-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26672398

RESUMO

The microaerophilic protist Giardia intestinalis is the causative agent of giardiasis, one of the most common intestinal infectious diseases worldwide. The pathogen lacks not only respiratory terminal oxidases (being amitochondriate), but also several conventional antioxidant enzymes, including catalase, superoxide dismutase and glutathione peroxidase. In spite of this, since living attached to the mucosa of the proximal small intestine, the parasite should rely on an efficient antioxidant system to survive the oxidative and nitrosative stress conditions found in this tract of the human gut. Here, we review current knowledge on the antioxidant defence systems in G. intestinalis, focusing on the progress made over the last decade in the field. The relevance of this research and future perspectives are discussed.


Assuntos
Flavoproteínas/metabolismo , Giardia lamblia/metabolismo , Hemeproteínas/metabolismo , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Oxirredutases/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Antioxidantes/metabolismo , Flavoproteínas/genética , Expressão Gênica , Giardia lamblia/genética , Giardia lamblia/patogenicidade , Giardíase/parasitologia , Giardíase/patologia , Hemeproteínas/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Complexos Multienzimáticos/genética , NADH NADPH Oxirredutases/genética , Oxirredução , Estresse Oxidativo , Oxirredutases/genética , Peroxirredoxinas/genética , Proteínas de Protozoários/genética
6.
PLoS Negl Trop Dis ; 8(1): e2631, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416465

RESUMO

The microaerophilic protozoan parasite Giardia intestinalis, causative of one of the most common human intestinal diseases worldwide, infects the mucosa of the proximal small intestine, where it has to cope with O2 and nitric oxide (NO). Elucidating the antioxidant defense system of this pathogen lacking catalase and other conventional antioxidant enzymes is thus important to unveil novel potential drug targets. Enzymes metabolizing O2, NO and superoxide anion (O2 (-•)) have been recently reported for Giardia, but it is yet unknown how the parasite copes with H2O2 and peroxynitrite (ONOO(-)). Giardia encodes two yet uncharacterized 2-cys peroxiredoxins (Prxs), GiPrx1a and GiPrx1b. Peroxiredoxins are peroxidases implicated in virulence and drug resistance in several parasitic protozoa, able to protect from nitroxidative stress and repair oxidatively damaged molecules. GiPrx1a and a truncated form of GiPrx1b (deltaGiPrx1b) were expressed in Escherichia coli, purified and functionally characterized. Both Prxs effectively metabolize H2O2 and alkyl-hydroperoxides (cumyl- and tert-butyl-hydroperoxide) in the presence of NADPH and E. coli thioredoxin reductase/thioredoxin as the reducing system. Stopped-flow experiments show that both proteins in the reduced state react with ONOO(-) rapidly (k = 4×10(5) M(-1) s(-1) and 2×10(5) M(-1) s(-1) at 4°C, for GiPrx1a and deltaGiPrx1b, respectively). Consistent with a protective role against oxidative stress, expression of GiPrx1a (but not deltaGiPrx1b) is induced in parasitic cells exposed to air O2 for 24 h. Based on these results, GiPrx1a and deltaGiPrx1b are suggested to play an important role in the antioxidant defense of Giardia, possibly contributing to pathogenesis.


Assuntos
Giardia lamblia/enzimologia , Peroxirredoxinas/metabolismo , Animais , Derivados de Benzeno , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Giardia lamblia/genética , Peróxido de Hidrogênio/metabolismo , Cinética , NADP/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/isolamento & purificação , Ácido Peroxinitroso/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , terc-Butil Hidroperóxido
7.
Free Radic Biol Med ; 51(8): 1567-74, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21839165

RESUMO

Unlike superoxide dismutases (SODs), superoxide reductases (SORs) eliminate superoxide anion (O(2)(•-)) not through its dismutation, but via reduction to hydrogen peroxide (H(2)O(2)) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR(Gi)) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T(final)) with Fe(3+) ligated to glutamate or hydroxide depending on pH (apparent pK(a)=8.7). Although showing negligible SOD activity, reduced SOR(Gi) reacts with O(2)(•-) with a pH-independent second-order rate constant k(1)=1.0×10(9) M(-1) s(-1) and yields the ferric-(hydro)peroxo intermediate T(1); this in turn rapidly decays to the T(final) state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR(Gi) is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.


Assuntos
Giardia lamblia/metabolismo , Giardíase/metabolismo , Oxirredutases/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo , Células Cultivadas , Clonagem Molecular , Eucariotos , Giardia lamblia/genética , Giardia lamblia/patogenicidade , Giardíase/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Intestino Delgado/metabolismo , Intestino Delgado/parasitologia , Irídio/metabolismo , Ferro/química , Ferro/metabolismo , Oxirredutases/genética , Filogenia , Proteínas de Protozoários/genética , Radiólise de Impulso , Proteínas Recombinantes/genética , Espectrofotometria , Superóxido Dismutase/metabolismo
8.
J Biol Chem ; 283(7): 4061-8, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18077462

RESUMO

The flavodiiron proteins (FDP) are widespread among strict or facultative anaerobic prokaryotes, where they are involved in the response to nitrosative and/or oxidative stress. Unexpectedly, FDPs were fairly recently identified in a restricted group of microaerobic protozoa, including Giardia intestinalis, the causative agent of the human infectious disease giardiasis. The FDP from Giardia was expressed, purified, and extensively characterized by x-ray crystallography, stopped-flow spectroscopy, respirometry, and NO amperometry. Contrary to flavorubredoxin, the FDP from Escherichia coli, the enzyme from Giardia has high O(2)-reductase activity (>40 s(-1)), but very low NO-reductase activity (approximately 0.2 s(-1)); O(2) reacts with the reduced protein quite rapidly (milliseconds) and with high affinity (K(m) < or = 2 microM), producing H(2)O. The three-dimensional structure of the oxidized protein determined at 1.9A resolution shows remarkable similarities with prokaryotic FDPs. Consistent with HPLC analysis, the enzyme is a dimer of dimers with FMN and the non-heme di-iron site topologically close at the monomer-monomer interface. Unlike the FDP from Desulfovibrio gigas, the residue His-90 is a ligand of the di-iron site, in contrast with the proposal that ligation of this histidine is crucial for a preferential specificity for NO. We propose that in G. intestinalis the primary function of FDP is to efficiently scavenge O(2), allowing this microaerobic parasite to survive in the human small intestine, thus promoting its pathogenicity.


Assuntos
Flavoproteínas/metabolismo , Giardia lamblia/metabolismo , Ferro/metabolismo , Oxigênio/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Flavoproteínas/química , Flavoproteínas/genética , Modelos Moleculares , Conformação Proteica , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA