Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nature ; 614(7948): 539-547, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725933

RESUMO

Antibody responses during infection and vaccination typically undergo affinity maturation to achieve high-affinity binding for efficient neutralization of pathogens1,2. Similarly, high affinity is routinely the goal for therapeutic antibody generation. However, in contrast to naturally occurring or direct-targeting therapeutic antibodies, immunomodulatory antibodies, which are designed to modulate receptor signalling, have not been widely examined for their affinity-function relationship. Here we examine three separate immunologically important receptors spanning two receptor superfamilies: CD40, 4-1BB and PD-1. We show that low rather than high affinity delivers greater activity through increased clustering. This approach delivered higher immune cell activation, in vivo T cell expansion and antitumour activity in the case of CD40. Moreover, an inert anti-4-1BB monoclonal antibody was transformed into an agonist. Low-affinity variants of the clinically important antagonistic anti-PD-1 monoclonal antibody nivolumab also mediated more potent signalling and affected T cell activation. These findings reveal a new paradigm for augmenting agonism across diverse receptor families and shed light on the mechanism of antibody-mediated receptor signalling. Such affinity engineering offers a rational, efficient and highly tuneable solution to deliver antibody-mediated receptor activity across a range of potencies suitable for translation to the treatment of human disease.


Assuntos
Anticorpos Monoclonais , Afinidade de Anticorpos , Imunomodulação , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígenos CD40/efeitos dos fármacos , Antígenos CD40/imunologia , Imunomodulação/efeitos dos fármacos , Imunomodulação/imunologia , Nivolumabe/imunologia , Nivolumabe/farmacologia
2.
Proc Natl Acad Sci U S A ; 121(12): e2308478121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489389

RESUMO

The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.


Assuntos
Compostos Férricos , Prochlorococcus , Compostos Férricos/química , Proteínas de Ligação ao Ferro/metabolismo , Prochlorococcus/metabolismo , Ferro/metabolismo , Oxirredução , Transferrina/metabolismo , Água/química , Compostos Ferrosos/química , Cristalografia por Raios X
3.
J Biol Chem ; 300(5): 107245, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569940

RESUMO

The IgG-specific endoglycosidases EndoS and EndoS2 from Streptococcus pyogenes can remove conserved N-linked glycans present on the Fc region of host antibodies to inhibit Fc-mediated effector functions. These enzymes are therefore being investigated as therapeutics for suppressing unwanted immune activation, and have additional application as tools for antibody glycan remodeling. EndoS and EndoS2 differ in Fc glycan substrate specificity due to structural differences within their catalytic glycosyl hydrolase domains. However, a chimeric EndoS enzyme with a substituted glycosyl hydrolase from EndoS2 loses catalytic activity, despite high structural homology between the two enzymes, indicating either mechanistic divergence of EndoS and EndoS2, or improperly-formed domain interfaces in the chimeric enzyme. Here, we present the crystal structure of the EndoS2-IgG1 Fc complex determined to 3.0 Å resolution. Comparison of complexed and unliganded EndoS2 reveals relative reorientation of the glycosyl hydrolase, leucine-rich repeat and hybrid immunoglobulin domains. The conformation of the complexed EndoS2 enzyme is also different when compared to the earlier EndoS-IgG1 Fc complex, and results in distinct contact surfaces between the two enzymes and their Fc substrate. These findings indicate mechanistic divergence of EndoS2 and EndoS. It will be important to consider these differences in the design of IgG-specific enzymes, developed to enable customizable antibody glycosylation.


Assuntos
Proteínas de Bactérias , Glicosídeo Hidrolases , Imunoglobulina G , Modelos Moleculares , Streptococcus pyogenes , Humanos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Streptococcus pyogenes/enzimologia , Especificidade por Substrato , Estrutura Quaternária de Proteína
4.
Proc Natl Acad Sci U S A ; 114(51): E10956-E10964, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29158404

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a major human pandemic. Germline-encoded mycolyl lipid-reactive (GEM) T cells are donor-unrestricted and recognize CD1b-presented mycobacterial mycolates. However, the molecular requirements governing mycolate antigenicity for the GEM T cell receptor (TCR) remain poorly understood. Here, we demonstrate CD1b expression in TB granulomas and reveal a central role for meromycolate chains in influencing GEM-TCR activity. Meromycolate fine structure influences T cell responses in TB-exposed individuals, and meromycolate alterations modulate functional responses by GEM-TCRs. Computational simulations suggest that meromycolate chain dynamics regulate mycolate head group movement, thereby modulating GEM-TCR activity. Our findings have significant implications for the design of future vaccines that target GEM T cells.


Assuntos
Antígenos CD1/imunologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tuberculose/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Antígenos CD1/química , Antígenos CD1/genética , Expressão Gênica , Granuloma/imunologia , Granuloma/metabolismo , Granuloma/microbiologia , Granuloma/patologia , Humanos , Imuno-Histoquímica , Ativação Linfocitária/imunologia , Modelos Moleculares , Conformação Molecular , Ácidos Micólicos/química , Ácidos Micólicos/metabolismo , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Tuberculose/microbiologia
5.
Angew Chem Int Ed Engl ; 59(48): 21656-21662, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32780931

RESUMO

Obtaining structures of intact redox states of metal centers derived from zero dose X-ray crystallography can advance our mechanistic understanding of metalloenzymes. In dye-decolorising heme peroxidases (DyPs), controversy exists regarding the mechanistic role of the distal heme residues aspartate and arginine in the heterolysis of peroxide to form the catalytic intermediate compound I (FeIV =O and a porphyrin cation radical). Using serial femtosecond X-ray crystallography (SFX), we have determined the pristine structures of the FeIII and FeIV =O redox states of a B-type DyP. These structures reveal a water-free distal heme site that, together with the presence of an asparagine, imply the use of the distal arginine as a catalytic base. A combination of mutagenesis and kinetic studies corroborate such a role. Our SFX approach thus provides unique insight into how the distal heme site of DyPs can be tuned to select aspartate or arginine for the rate enhancement of peroxide heterolysis.


Assuntos
Arginina/metabolismo , Corantes/metabolismo , Heme/metabolismo , Compostos de Ferro/metabolismo , Oxigênio/metabolismo , Peroxidase/metabolismo , Arginina/química , Biocatálise , Corantes/química , Cristalografia por Raios X , Heme/química , Compostos de Ferro/química , Modelos Moleculares , Oxirredução , Oxigênio/química , Peroxidase/química , Streptomyces lividans/enzimologia
6.
J Biol Chem ; 293(47): 18099-18109, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30217820

RESUMO

Atmospheric nitrogen fixation by photosynthetic cyanobacteria (diazotrophs) strongly influences oceanic primary production and in turn affects global biogeochemical cycles. Species of the genus Trichodesmium are major contributors to marine diazotrophy, accounting for a significant proportion of the fixed nitrogen in tropical and subtropical oceans. However, Trichodesmium spp. are metabolically constrained by the availability of iron, an essential element for both the photosynthetic apparatus and the nitrogenase enzyme. Survival strategies in low-iron environments are typically poorly characterized at the molecular level, because these bacteria are recalcitrant to genetic manipulation. Here, we studied a homolog of the iron deficiency-induced A (IdiA)/ferric uptake transporter A (FutA) protein, Tery_3377, which has been used as an in situ iron-stress biomarker. IdiA/FutA has an ambiguous function in cyanobacteria, with its homologs hypothesized to be involved in distinct processes depending on their cellular localization. Using signal sequence fusions to GFP and heterologous expression in the model cyanobacterium Synechocystis sp. PCC 6803, we show that Tery_3377 is targeted to the periplasm by the twin-arginine translocase and can complement the deletion of the native Synechocystis ferric-iron ABC transporter periplasmic binding protein (FutA2). EPR spectroscopy revealed that purified recombinant Tery_3377 has specificity for iron in the Fe3+ state, and an X-ray crystallography-determined structure uncovered a functional iron substrate-binding domain, with Fe3+ pentacoordinated by protein and buffer ligands. Our results support assignment of Tery_3377 as a functional FutA subunit of an Fe3+ ABC transporter but do not rule out dual IdiA function.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Água do Mar/microbiologia , Trichodesmium/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Proteínas de Ligação ao Ferro/genética , Oceanos e Mares , Domínios Proteicos , Trichodesmium/química , Trichodesmium/genética , Trichodesmium/isolamento & purificação
7.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31076426

RESUMO

The South Pacific Gyre (SPG) covers 10% of the ocean's surface and is often regarded as a marine biological desert. To gain an on-site overview of the remote, ultraoligotrophic microbial community of the SPG, we developed a novel onboard analysis pipeline, which combines next-generation sequencing with fluorescence in situ hybridization and automated cell enumeration. We tested the pipeline during the SO-245 "UltraPac" cruise from Chile to New Zealand and found that the overall microbial community of the SPG was highly similar to those of other oceanic gyres. The SPG was dominated by 20 major bacterial clades, including SAR11, SAR116, the AEGEAN-169 marine group, SAR86, Prochlorococcus, SAR324, SAR406, and SAR202. Most of the bacterial clades showed a strong vertical (20 m to 5,000 m), but only a weak longitudinal (80°W to 160°W), distribution pattern. Surprisingly, in the central gyre, Prochlorococcus, the dominant photosynthetic organism, had only low cellular abundances in the upper waters (20 to 80 m) and was more frequent around the 1% irradiance zone (100 to 150 m). Instead, the surface waters of the central gyre were dominated by the SAR11, SAR86, and SAR116 clades known to harbor light-driven proton pumps. The alphaproteobacterial AEGEAN-169 marine group was particularly abundant in the surface waters of the central gyre, indicating a potentially interesting adaptation to ultraoligotrophic waters and high solar irradiance. In the future, the newly developed community analysis pipeline will allow for on-site insights into a microbial community within 35 h of sampling, which will permit more targeted sampling efforts and hypothesis-driven research.IMPORTANCE The South Pacific Gyre, due to its vast size and remoteness, is one of the least-studied oceanic regions on earth. However, both remote sensing and in situ measurements indicated that the activity of its microbial community contributes significantly to global biogeochemical cycles. Presented here is an unparalleled investigation of the microbial community of the SPG from 20- to 5,000-m depths covering a geographic distance of ∼7,000 km. This insight was achieved through the development of a novel onboard analysis pipeline, which combines next-generation sequencing with fluorescence in situ hybridization and automated cell enumeration. The pipeline is well comparable to onshore systems based on the Illumina platforms and yields microbial community data in less than 35 h after sampling. Going forward, the ability to gain on-site knowledge of a remote microbial community will permit hypothesis-driven research, through the generation of novel scientific questions and subsequent additional targeted sampling efforts.


Assuntos
Bactérias/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Microbiota , Água do Mar/microbiologia , Bactérias/classificação , Oceano Pacífico
8.
Nat Chem Biol ; 13(3): 290-294, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28092359

RESUMO

Substrate channeling has emerged as a common mechanism for enzymatic intermediate transfer. A conspicuous gap in knowledge concerns the use of covalent lysine imines in the transfer of carbonyl-group-containing intermediates, despite their wideuse in enzymatic catalysis. Here we show how imine chemistry operates in the transfer of covalent intermediates in pyridoxal 5'-phosphate biosynthesis by the Arabidopsis thaliana enzyme Pdx1. An initial ribose 5-phosphate lysine imine is converted to the chromophoric I320 intermediate, simultaneously bound to two lysine residues and partially vacating the active site, which creates space for glyceraldehyde 3-phosphate to bind. Crystal structures show how substrate binding, catalysis and shuttling are coupled to conformational changes around strand ß6 of the Pdx1 (ßα)8-barrel. The dual-specificity active site and imine relay mechanism for migration of carbonyl intermediates provide elegant solutions to the challenge of coordinating a complex sequence of reactions that follow a path of over 20 Å between substrate- and product-binding sites.


Assuntos
Lisina/metabolismo , Vitamina B 6/biossíntese , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Carbono-Nitrogênio Liases , Lisina/química , Modelos Moleculares , Estrutura Molecular , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/metabolismo , Vitamina B 6/química
9.
Proc Natl Acad Sci U S A ; 113(9): E1266-75, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884207

RESUMO

Cluster of differentiation 1c (CD1c)-dependent self-reactive T cells are abundant in human blood, but self-antigens presented by CD1c to the T-cell receptors of these cells are poorly understood. Here we present a crystal structure of CD1c determined at 2.4 Å revealing an extended ligand binding potential of the antigen groove and a substantially different conformation compared with known CD1c structures. Computational simulations exploring different occupancy states of the groove reenacted these different CD1c conformations and suggested cholesteryl esters (CE) and acylated steryl glycosides (ASG) as new ligand classes for CD1c. Confirming this, we show that binding of CE and ASG to CD1c enables the binding of human CD1c self-reactive T-cell receptors. Hence, human CD1c adopts different conformations dependent on ligand occupancy of its groove, with CE and ASG stabilizing CD1c conformations that provide a footprint for binding of CD1c self-reactive T-cell receptors.


Assuntos
Antígenos CD1/imunologia , Ésteres do Colesterol/metabolismo , Glicoproteínas/imunologia , Linfócitos T/imunologia , Antígenos CD1/química , Antígenos CD1d , Glicoproteínas/química , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica
10.
Biophys J ; 115(2): 289-299, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021105

RESUMO

Complementary strategies of small-angle x-ray scattering (SAXS) and crystallographic analysis are often used to determine atomistic three-dimensional models of macromolecules and their variability in solution. This combination of techniques is particularly valuable when applied to macromolecular complexes to detect changes within the individual binding partners. Here, we determine the x-ray crystallographic structure of a F(ab) fragment in complex with CD32b, the only inhibitory Fc-γ receptor in humans, and compare the structure of the F(ab) from the crystal complex to SAXS data for the F(ab) alone in solution. We investigate changes in F(ab) structure by predicting theoretical scattering profiles for atomistic structures extracted from molecular dynamics (MD) simulations of the F(ab) and assessing the agreement of these structures to our experimental SAXS data. Through principal component analysis, we are able to extract principal motions observed during the MD trajectory and evaluate the influence of these motions on the agreement of structures to the F(ab) SAXS data. Changes in the F(ab) elbow angle were found to be important to reach agreement with the experimental data; however, further discrepancies were apparent between our F(ab) structure from the crystal complex and SAXS data. By analyzing multiple MD structures observed in similar regions of the principal component analysis, we were able to pinpoint these discrepancies to a specific loop region in the F(ab) heavy chain. This method, therefore, not only allows determination of global changes but also allows identification of localized motions important for determining the agreement between atomistic structures and SAXS data. In this particular case, the findings allowed us to discount the hypothesis that structural changes were induced upon complex formation, a significant find informing the drug development process. The methodology described here is generally applicable to deconvolute global and local changes of macromolecular structures and is well suited to other systems.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Simulação de Dinâmica Molecular , Receptores de IgG/imunologia , Espalhamento a Baixo Ângulo , Difração de Raios X , Conformação Proteica
11.
IUCrJ ; 11(Pt 2): 237-248, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446456

RESUMO

Serial crystallography requires large numbers of microcrystals and robust strategies to rapidly apply substrates to initiate reactions in time-resolved studies. Here, we report the use of droplet miniaturization for the controlled production of uniform crystals, providing an avenue for controlled substrate addition and synchronous reaction initiation. The approach was evaluated using two enzymatic systems, yielding 3 µm crystals of lysozyme and 2 µm crystals of Pdx1, an Arabidopsis enzyme involved in vitamin B6 biosynthesis. A seeding strategy was used to overcome the improbability of Pdx1 nucleation occurring with diminishing droplet volumes. Convection within droplets was exploited for rapid crystal mixing with ligands. Mixing times of <2 ms were achieved. Droplet microfluidics for crystal size engineering and rapid micromixing can be utilized to advance time-resolved serial crystallography.


Assuntos
Arabidopsis , Microfluídica , Cristalografia , Cognição , Convecção
12.
Traffic ; 12(10): 1457-66, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21718401

RESUMO

Mitochondrial ribosomes synthesize core subunits of the inner membrane respiratory chain complexes. In mitochondria, translation is regulated by mRNA-specific activator proteins and occurs on membrane-associated ribosomes. Mdm38/Letm1 is a conserved membrane receptor for mitochondrial ribosomes and specifically involved in respiratory chain biogenesis. In addition, Mdm38 and its higher eukaryotic homolog Letm1, function as K(+)/H(+) or Ca(2+)/H(+) antiporters in the inner membrane. Here, we identify the conserved ribosome-binding domain (RBD) of Mdm38 and determine the crystal structure at 2.1 Å resolution. Surprisingly, Mdm38(RBD) displays a 14-3-3-like fold despite any similarity to 14-3-3-proteins at the primary sequence level and thus represents the first 14-3-3-like protein in mitochondria. The 14-3-3-like domain is critical for respiratory chain assembly through regulation of Cox1 and Cytb translation. We show that this function can be spatially separated from the ion transport activity of the membrane integrated portion of Mdm38. On the basis of the phenotypes observed for mdm38Δ as compared to Mdm38 lacking the RBD, we suggest a model that combining ion transport and translational regulation into one molecule allows for direct coupling of ion flux across the inner membrane, and serves as a signal for the translation of mitochondrial membrane proteins via its direct association with the protein synthesis machinery.


Assuntos
Proteínas 14-3-3/química , Proteínas de Membrana/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Plasmídeos , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Biol Chem ; 287(29): 24164-73, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22593581

RESUMO

Mitochondria and chloroplasts are of endosymbiotic origin. Their integration into cells entailed the development of protein translocons, partially by recycling bacterial proteins. We demonstrate the evolutionary conservation of the translocon component Tic22 between cyanobacteria and chloroplasts. Tic22 in Anabaena sp. PCC 7120 is essential. The protein is localized in the thylakoids and in the periplasm and can be functionally replaced by a plant orthologue. Tic22 physically interacts with the outer envelope biogenesis factor Omp85 in vitro and in vivo, the latter exemplified by immunoprecipitation after chemical cross-linking. The physical interaction together with the phenotype of a tic22 mutant comparable with the one of the omp85 mutant indicates a concerted function of both proteins. The three-dimensional structure allows the definition of conserved hydrophobic pockets comparable with those of ClpS or BamB. The results presented suggest a function of Tic22 in outer membrane biogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Plantas/metabolismo , Anabaena/metabolismo , Cianobactérias/ultraestrutura , Microscopia Eletrônica , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Transporte Proteico/fisiologia , Tilacoides/metabolismo
14.
Front Immunol ; 14: 1176724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153585

RESUMO

Invariant natural killer T (iNKT) cells are a unique T lymphocyte population expressing semi-invariant T cell receptors (TCRs) that recognise lipid antigens presented by CD1d. iNKT cells exhibit potent anti-tumour activity through direct killing mechanisms and indirectly through triggering the activation of other anti-tumour immune cells. Because of their ability to induce potent anti-tumour responses, particularly when activated by the strong iNKT agonist αGalCer, they have been the subject of intense research to harness iNKT cell-targeted immunotherapies for cancer treatment. However, despite potent anti-tumour efficacy in pre-clinical models, the translation of iNKT cell immunotherapy into human cancer patients has been less successful. This review provides an overview of iNKT cell biology and why they are of interest within the context of cancer immunology. We focus on the iNKT anti-tumour response, the seminal studies that first reported iNKT cytotoxicity, their anti-tumour mechanisms, and the various described subsets within the iNKT cell repertoire. Finally, we discuss several barriers to the successful utilisation of iNKT cells in human cancer immunotherapy, what is required for a better understanding of human iNKT cells, and the future perspectives facilitating their exploitation for improved clinical outcomes.


Assuntos
Células T Matadoras Naturais , Neoplasias , Humanos , Receptores de Antígenos de Linfócitos T , Neoplasias/terapia
15.
Biochim Biophys Acta ; 1814(11): 1567-76, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21884827

RESUMO

The chemical properties of the B(6) vitamers are uniquely suited for wide use as cofactors in essential reactions, such as decarboxylations and transaminations. This review addresses current efforts to explore vitamin B(6) dependent enzymatic reactions as drug targets. Several current targets are described that are found amongst these enzymes. The focus is set on diseases caused by protozoan parasites. Comparison across a range of these organisms allows insight into the distribution of potential targets, many of which may be of interest in the development of broad range anti-protozoan drugs. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.


Assuntos
Enzimas/metabolismo , Infecções por Protozoários/tratamento farmacológico , Fosfato de Piridoxal/metabolismo , Animais , Aspartato Aminotransferases/efeitos dos fármacos , Aspartato Aminotransferases/metabolismo , Liases de Carbono-Enxofre/efeitos dos fármacos , Liases de Carbono-Enxofre/metabolismo , Cisteína Sintase/efeitos dos fármacos , Cisteína Sintase/metabolismo , Glicina Hidroximetiltransferase/efeitos dos fármacos , Glicina Hidroximetiltransferase/metabolismo , Humanos , Hidrolases/efeitos dos fármacos , Hidrolases/metabolismo , Ornitina Descarboxilase/efeitos dos fármacos , Ornitina Descarboxilase/metabolismo , Infecções por Protozoários/enzimologia , Infecções por Protozoários/metabolismo , Trypanosoma cruzi/enzimologia
16.
Biochim Biophys Acta ; 1814(11): 1585-96, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21767669

RESUMO

Vitamin B(6) is an essential cofactor that participates in a large number of biochemical reactions. Pyridoxal phosphate is biosynthesized de novo by two different pathways (the DXP dependent pathway and the R5P pathway) and can also be salvaged from the environment. It is one of the few cofactors whose catabolic pathway has been comprehensively characterized. It is also known to function as a singlet oxygen scavenger and has protective effects against oxidative stress in fungi. Enzymes utilizing vitamin B(6) are important targets for therapeutic agents. This review provides a concise overview of the mechanistic enzymology of vitamin B(6) biosynthesis and catabolism. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.


Assuntos
Fosfato de Piridoxal/biossíntese , Fosfato de Piridoxal/metabolismo , Cristalografia por Raios X , Escherichia coli/enzimologia , Modelos Moleculares , Estresse Oxidativo , Transferases/química , Transferases/metabolismo , Vitamina B 6/metabolismo
17.
Biochem J ; 436(2): 313-9, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21434866

RESUMO

GTPases act as molecular switches to control many cellular processes, including signalling, protein translation and targeting. Switch activity can be regulated by external effector proteins or intrinsic properties, such as dimerization. The recognition and translocation of pre-proteins into chloroplasts [via the TOC/TIC (translocator at the outer envelope membrane of chloroplasts/inner envelope membrane of chloroplasts)] is controlled by two homologous receptor GTPases, Toc33 and Toc159, whose reversible dimerization is proposed to regulate translocation of incoming proteins in a GTP-dependent manner. Toc33 is a homodimerizing GTPase. Functional analysis suggests that homodimerization is a key step in the translocation process, the molecular functions of which, as well as the elements regulating this event, are largely unknown. In the present study, we show that homodimerization reduces the rate of nucleotide exchange, which is consistent with the observed orientation of the monomers in the crystal structure. Pre-protein binding induces a dissociation of the Toc33 homodimer and results in the exchange of GDP for GTP. Thus homodimerization does not serve to activate the GTPase activity as discussed many times previously, but to control the nucleotide-loading state. We discuss this novel regulatory mode and its impact on the current models of protein import into the chloroplast.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/metabolismo , Multimerização Proteica/fisiologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Cloroplastos/genética , GTP Fosfo-Hidrolases/genética , Guanosina Difosfato/genética , Guanosina Trifosfato/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Ligação Proteica/genética , Multimerização Proteica/genética , Precursores de Proteínas/metabolismo , Especificidade por Substrato/genética
18.
Nat Commun ; 13(1): 7801, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528711

RESUMO

Enzymatic cleavage of IgG antibodies is a common strategy used by pathogenic bacteria to ablate immune effector function. The Streptococcus pyogenes bacterium secretes the protease IdeS and the glycosidase EndoS, which specifically catalyse cleavage and deglycosylation of human IgG, respectively. IdeS has received clinical approval for kidney transplantation in hypersensitised individuals, while EndoS has found application in engineering antibody glycosylation. We present crystal structures of both enzymes in complex with their IgG1 Fc substrate, which was achieved using Fc engineering to disfavour preferential Fc crystallisation. The IdeS protease displays extensive Fc recognition and encases the antibody hinge. Conversely, the glycan hydrolase domain in EndoS traps the Fc glycan in a "flipped-out" conformation, while additional recognition of the Fc peptide is driven by the so-called carbohydrate binding module. In this work, we reveal the molecular basis of antibody recognition by bacterial enzymes, providing a template for the development of next-generation enzymes.


Assuntos
Proteínas de Bactérias , Glicosídeo Hidrolases , Humanos , Anticorpos Antibacterianos , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Imunoglobulina G , Peptídeo Hidrolases , Polissacarídeos/metabolismo , Streptococcus pyogenes/metabolismo
19.
RSC Chem Biol ; 3(2): 227-230, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35360887

RESUMO

The Pdx1 enzyme catalyses condensation of two carbohydrates and ammonia to form pyridoxal 5-phosphate (PLP) via an imine relay mechanism of carbonyl intermediates. The I333 intermediate characterised here using structural, UV-vis absorption spectroscopy and mass spectrometry analyses rationalises stereoselective deprotonation and subsequent substrate assisted phosphate elimination, central to PLP biosynthesis.

20.
Sci Immunol ; 7(73): eabm3723, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857577

RESUMO

Antibodies protect from infection, underpin successful vaccines and elicit therapeutic responses in otherwise untreatable cancers and autoimmune conditions. The human IgG2 isotype displays a unique capacity to undergo disulfide shuffling in the hinge region, leading to modulation of its ability to drive target receptor signaling (agonism) in a variety of important immune receptors, through hitherto unexplained molecular mechanisms. To address the underlying process and reveal how hinge disulfide orientation affects agonistic activity, we generated a series of cysteine to serine exchange variants in the hinge region of the clinically relevant monoclonal antibody ChiLob7/4, directed against the key immune receptor CD40. We report how agonistic activity varies with disulfide pattern and is afforded by the presence of a disulfide crossover between F(ab) arms in the agonistic forms, independently of epitope, as observed in the determined crystallographic structures. This structural "switch" affects directly on antibody conformation and flexibility. Small-angle x-ray scattering and ensemble modeling demonstrated that the least flexible variants adopt the fewest conformations and evoke the highest levels of receptor agonism. This covalent change may be amenable for broad implementation to modulate receptor signaling in an epitope-independent manner in future therapeutics.


Assuntos
Dissulfetos , Imunoglobulina G , Anticorpos Monoclonais , Dissulfetos/química , Epitopos , Humanos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA