Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 58(15): 4014-4019, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31158151

RESUMO

Two-dimensional (2D) materials have realized significant new applications in photonics, electronics, and optoelectronics. Among these materials is tungsten disulphide (WS2), which is a 2D material that shows excellent optoelectronic properties, tunable/sizable bandgap in the visible range, and good absorption. A polycrystalline WS2 thin film is successfully deposited on a substrate using radio frequency magnetron sputtering at room temperature. The x-ray diffraction pattern reveals two hexagonal structured peaks along the (100) and (110) planes. Energy-dispersive x-ray spectroscopy reveals a non-stoichiometric WS2 film with 1.25 ratio of S/W for a 156.3 nm thick film, while Raman shifts are observed at the E2g1 and A1g phonon modes located at 350.70 cm-1 and 415.60 cm-1, respectively. A sandwiched heterojunction photodetector device is successfully fabricated and illuminated within the violet range at 441 nm and 10 V of bias voltage. The maximum photocurrent values are calculated as 0.95 µA, while the responsivity is observed at 169.3 mA W-1 and detectivity 1.48×108 Jones at illuminated power of 0.6124 µm. These results highlight the adaptability of the present technique for large-scale applications as well as the flexibility to promote development of advanced optoelectronic devices.

2.
Appl Opt ; 52(4): 818-23, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23385923

RESUMO

A highly stable tunable dual-wavelength fiber laser (TDWFL) using graphene as a means to generate a highly stable output is proposed and generated. The TDWFL comprises a 1 m long, highly doped erbium-doped fiber (EDF) acting as the linear gain medium, with a 24-channel arrayed waveguide grating acting as a wavelength slicer as well as a tuning mechanism to generate different wavelength pairs. The tuned wavelength pairs can range from 0.8 to 18.2 nm. A few layers of graphene are incorporated into the laser cavity to induce the four-wave-mixing effect, which stabilizes the dual-wavelength output by suppressing the mode competition that arises as a result of homogenous broadening in the EDF.

3.
Sensors (Basel) ; 13(10): 13276-88, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24084118

RESUMO

An efficient and low cost optical method for directly measuring the concentration of homogenous biological solutes is proposed and demonstrated. The proposed system operates by Fresnel reflection, with a flat-cleaved single-mode fiber serving as the sensor probe. A laser provides a 12.9 dBm sensor signal at 1,550 nm, while a computer-controlled optical power meter measures the power of the signal returned by the probe. Three different mesenchymal stem cell (MSC) lines were obtained, sub-cultured and trypsinized daily over 9 days. Counts were measured using a haemocytometer and the conditioned media (CM) was collected daily and stored at -80 °C. MSCs release excretory biomolecules proportional to their growth rate into the CM, which changes the refractive index of the latter. The sensor is capable of detecting changes in the number of stem cells via correlation to the change in the refractive index of the CM, with the measured power loss decreasing approximately 0.4 dB in the CM sample per average 1,000 cells in the MSC subculture. The proposed system is highly cost-effective, simple to deploy, operate, and maintain, is non-destructive, and allows reliable real-time measurement of various stem cell proliferation parameters.


Assuntos
Biopolímeros/análise , Biopolímeros/biossíntese , Meios de Cultura/análise , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Fotometria/instrumentação , Refratometria/instrumentação , Técnicas Biossensoriais/instrumentação , Proliferação de Células , Células Cultivadas , Meios de Cultura/química , Desenho de Equipamento , Análise de Falha de Equipamento , Citometria de Fluxo/instrumentação , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Nanomaterials (Basel) ; 12(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36080017

RESUMO

In this study, we experimentally investigated the nonlinear optical properties of Au nanoparticles (Au NPs) that were prepared in pure distilled water using the laser ablation method. The Au NPs were prepared using a nanosecond Nd:YAG laser with an ablation time of 5 or 10 min at a constant laser energy of 100 mJ. The structure and the linear optical properties of the Au NPs were investigated using a transmission electron microscope (TEM) and UV-visible spectrophotometer analysis, respectively. The TEM measurements showed that the average size of the Au NPs varied from 20.3 to 14.1 nm, depending on the laser ablation time. The z-scan technique was used to investigate the nonlinear refractive index (n2) and nonlinear absorption coefficient (γ) of the Au NPs, which were irradiated at different excitation wavelengths that ranged from 740 to 820 nm and at different average powers that ranged from 0.8 to 1.6 W. The Au NP samples exhibited a reverse saturable absorption (RSA) behavior that increased when the excitation wavelength and/or incident laser power increased. In addition, the Au NPs acted as a self-defocusing material whenever the excitation wavelength or incident power were modified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA