Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 511(2): 409-415, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30799085

RESUMO

Bacillus thuringiensis is a bacterium that produces many insecticidal proteins including cytolytic proteins or Cyt toxins. Although the Cyt toxin shows specific toxicity against Dipteran insect species, the toxin binds directly to the lipid membrane without a specific protein receptor requirement. In this work, we have investigated the interaction of Cyt2Aa2 toxin with lipid bilayers composed of different lipid phases. By means of atomic force microscopy (AFM), lipid phase separation was observed for 1:1 and 4:1 M mixtures of DPPC/POPC bilayers. The exposure of Cyt2Aa2 to these lipid bilayers revealed that the toxin selectively bound to Ld lipid bilayer (corresponding to POPC). In turn, it did not bind to the Lo and So phases (corresponding to DPPC). Interestingly, for the bilayer of 4:1 DPPC/POPC mixture, the binding of Cyt2Aa2 was localized at the lipid phase boundary instead of Ld domain as occurred for the 1:1 DPPC/POPC bilayer. In addition, quartz crystal microbalance with dissipation experiments confirmed AFM results. In particular, the measurements showed that amount of protein bound to 1:1 DPPC/POPC (with phase separation) was half of the binding quantified for the Ld phase lipid bilayer (pure POPC and 1:4 DPPC/POPC mixture). These results indicate that the lipid phase (lipid acyl chain) influences the Cyt2Aa2-lipid interaction.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Bicamadas Lipídicas/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Toxinas de Bacillus thuringiensis , Sítios de Ligação , Bicamadas Lipídicas/química , Transição de Fase , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Ligação Proteica
2.
Int J Mol Sci ; 19(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513608

RESUMO

Cytolytic protein (Cyt) is a member of insecticidal proteins produced by Bacillus thuringiensis. Cyt protein has activity against insect cells and mammalian cells, which differ in lipid and cholesterol composition. This study presents the lipid binding behavior of Cyt2Aa2 protein on model membranes containing different levels of cholesterol content by combining Quartz Crystal Microbalance with Dissipation (QCM-D) and Atomic Force Microscopy (AFM). QCM-D results revealed that cholesterol enhances the binding rate of Cyt2Aa2 protein onto lipid bilayers. In addition, the thicker lipid bilayer was observed for the highest cholesterol content. These results were confirmed by AFM. The analysis of protein surface coverage as a function of time showed a slower process for 5:0 and 5:0.2 (POPC:Chol) ratios than for 5:1 and 5:2 (POPC:Chol) ratios. Significantly, the Cyt2Aa2-lipid binding behavior and the protein⁻lipid layer were different for the 5:3 (POPC:Chol) ratio. Furthermore, AFM images revealed a transformation of Cyt2Aa2/lipid layer structure from strip pattern to ring shape structures (which showed a strong repulsion with AFM tip). In summary, cholesterol increases the binding rate and alters the lipid binding behavior of Cyt2Aa2 protein, although it is not required for Cyt2Aa2 protein binding onto lipid bilayers.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Proteínas Hemolisinas/metabolismo , Microscopia de Força Atômica , Ligação Proteica
3.
Biochem Biophys Res Commun ; 492(2): 212-217, 2017 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-28821431

RESUMO

Bacillus thuringiensis produces cytolytic proteins (Cyt) that show toxicity against dipteran insect larvae acting directly on the cell membrane. Up to now, two different models have been proposed to explain the interaction mechanism of the cytolytic protein Cyt2Aa2 on lipid membranes: pore-forming and detergent-like action. Here we report on the interaction of Cyt2Aa2 with lipid/cholesterol bilayers at early stage (far from equilibrium) as a function of protein concentration. Quartz crystal microbalance with dissipation (QCM-D) measurements showed that the rate of protein adsorption increased with concentration, although the mass of the final protein-lipid was similar after two hours. In addition, the dissipation (compliance of the hybrid lipid/protein layer) increased with decreasing protein concentration. Furthermore, atomic force microscopy (AFM) revealed that the structure of the protein-lipid layer was concentration and time dependent. A rigid hybrid homogeneous layer was observed at protein concentrations of 50 µg/ml and 100 µg/ml after 30 min. At lower concentrations, 10 µg/ml and 17.5 µg/ml, protein adsorption on the lipid layer led to the formation of small aggregates. Interestingly, at 25 µg/ml a transition of a hole-like structure into a homogeneous layer was observed. This suggests that 25 µg/ml is a threshold concentration for the binding mechanism of Cyt2Aa2 on to lipid membranes.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Bicamadas Lipídicas/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/análise , Endotoxinas/análise , Proteínas Hemolisinas/análise , Microscopia de Força Atômica , Agregados Proteicos , Ligação Proteica , Técnicas de Microbalança de Cristal de Quartzo
4.
Langmuir ; 31(38): 10477-83, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26354323

RESUMO

Bacillus thuringiensis is known by its insecticidal property. The insecticidal proteins are produced at different growth stages, including the cytolytic protein (Cyt2Aa2), which is a bioinsecticide and an antimicrobial protein. However, the binding mechanism (and the interaction) of Cyt2Aa2 on lipid bilayers is still unclear. In this work, we have used quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM) to investigate the interaction between Cyt2Aa2 protein and (cholesterol-)lipid bilayers. We have found that the binding mechanism is concentration dependent. While at 10 µg/mL, Cyt2Aa2 binds slowly on the lipid bilayer forming a compliance protein/lipid layer with aggregates, at higher protein concentrations (100 µg/mL), the binding is fast, and the protein/lipid layer is more rigid including holes (of about a lipid bilayer thickness) in its structure. Our study suggests that the protein/lipid bilayer binding mechanism seems to be carpet-like at low protein concentrations and pore forming-like at high protein concentrations.


Assuntos
Proteínas de Bactérias/química , Bicamadas Lipídicas/química , Técnicas de Microbalança de Cristal de Quartzo , Bacillus thuringiensis/química , Sítios de Ligação , Microscopia de Força Atômica , Tamanho da Partícula , Propriedades de Superfície
5.
Toxins (Basel) ; 15(2)2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36828480

RESUMO

Cyt proteins are insecticidal proteins originally from Bacillus thuringiensis. The lipid binding of the Cyt2Aa2 protein depends on the phase of the lipid bilayer. In this work, the importance of the conserved T144 residue in the αD-ß4 loop for lipid binding on fluid lipid membranes was investigated via atomic force microscopy (AFM). Lipid membrane fluidity could be monitored for the following lipid mixture systems: POPC/DPPC, POPC/SM, and DOPC/SM. AFM results revealed that the T144A mutant was unable to bind to pure POPC bilayers. Similar topography between the wildtype and T144A mutant was seen for the POPC/Chol system. Small aggregates of T144A mutant were observed in the POPC and DOPC domains of the lipid mixture systems. In addition, the T144A mutant had no cytotoxic effect against human colon cancer cells. These results suggest that alanine replacement into threonine 144 hinders the binding of Cyt2Aa2 on liquid lipid membranes. These observations provide a possibility to modify the Cyt2Aa2 protein to specific cells via lipid phase selection.


Assuntos
Proteínas de Bactérias , Treonina , Humanos , Proteínas de Bactérias/metabolismo , Bicamadas Lipídicas/metabolismo , Fluidez de Membrana , Mutação , Fosfatidilcolinas
6.
Sci Rep ; 11(1): 4542, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633190

RESUMO

Beta-2-glycoprotein I (ß2GPI) is a blood protein and the major antigen in the autoimmune disorder antiphospholipid syndrome (APS). ß2GPI exists mainly in closed or open conformations and comprises of 11 disulfides distributed across five domains. The terminal Cys288/Cys326 disulfide bond at domain V has been associated with different cysteine redox states. The role of this disulfide bond in conformational dynamics of this protein has not been investigated so far. Here, we report on the enzymatic driven reduction by thioredoxin-1 (recycled by Tris(2-carboxyethyl)phosphine; TCEP) of ß2GPI. Specific reduction was demonstrated by Western blot and mass spectrometry analyses confirming majority targeting to the fifth domain of ß2GPI. Atomic force microscopy images suggested that reduced ß2GPI shows a slightly higher proportion of open conformation and is more flexible compared to the untreated protein as confirmed by modelling studies. We have determined a strong increase in the binding of pathogenic APS autoantibodies to reduced ß2GPI as demonstrated by ELISA. Our study is relevant for understanding the effect of ß2GPI reduction on the protein structure and its implications for antibody binding in APS patients.


Assuntos
Autoanticorpos/química , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , beta 2-Glicoproteína I/química , Autoanticorpos/imunologia , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Imunoglobulina G/química , Imunoglobulina G/imunologia , Microscopia de Força Atômica , Modelos Moleculares , Ligação Proteica/imunologia , Relação Estrutura-Atividade , beta 2-Glicoproteína I/imunologia , beta 2-Glicoproteína I/metabolismo
7.
Toxins (Basel) ; 12(4)2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260286

RESUMO

Cytolytic toxin (Cyt) is a toxin among Bacillus thuringiensis insecticidal proteins. Cyt toxin directly interacts with membrane lipids for cytolytic action. However, low hemolytic activity is desired to avoid non-specific effects in mammals. In this work, the interaction between Cyt2Aa2 toxin and model lipid bilayers mimicking the erythrocyte membrane was investigated for Cyt2Aa2 wild type (WT) and the T144A mutant, a variant with lower hemolytic activity. Quartz crystal microbalance with dissipation (QCM-D) results revealed a smaller lipid binding capacity for the T144A mutant than for the WT. In particular, the T144A mutant was unable to bind to the phosphatidylcholine lipid (POPC) bilayer. However, the addition of cholesterol (Chol) or sphingomyelin (SM) to the POPC bilayer promoted binding of the T144 mutant. Moreover, atomic force microscopy (AFM) images unveiled small aggregates of the T144A mutant on the 1:1 sphingomyelin/POPC bilayers. In contrast, the lipid binding trend for WT and T144A mutant was comparable for the 1:0.4 POPC/cholesterol and the 1:1:1 sphingomyelin/POPC/cholesterol bilayers. Furthermore, the binding of WT and T144A mutant onto erythrocyte cells was investigated. The experiments showed that the T144A mutant and the WT bind onto different areas of the erythrocyte membrane. Overall the results suggest that the T144 residue plays an important role for lipid binding.


Assuntos
Toxinas de Bacillus thuringiensis/toxicidade , Bacillus thuringiensis/metabolismo , Endotoxinas/toxicidade , Membrana Eritrocítica/efeitos dos fármacos , Proteínas Hemolisinas/toxicidade , Bicamadas Lipídicas , Lipídeos de Membrana/metabolismo , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/metabolismo , Sítios de Ligação , Colesterol/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Membrana Eritrocítica/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Cinética , Microscopia de Força Atômica , Mutação , Fosfatidilcolinas/metabolismo , Ligação Proteica , Técnicas de Microbalança de Cristal de Quartzo , Esfingomielinas/metabolismo
8.
Biosci Rep ; 36(5)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27612497

RESUMO

Bacillus thuringiensis (Bt) Cyt2Aa2 showed toxicity against Dipteran insect larvae and in vitro lysis activity on several cells. It has potential applications in the biological control of insect larvae. Although pore-forming and/or detergent-like mechanisms were proposed, the mechanism underlying cytolytic activity remains unclear. Analysis of the haemolytic activity of Cyt2Aa2 with osmotic stabilizers revealed partial toxin inhibition, suggesting a distinctive mechanism from the putative pore formation model. Membrane permeability was studied using fluorescent dye entrapped in large unilamellar vesicles (LUVs) at various protein/lipid molar ratios. Binding of Cyt2Aa2 monomer to the lipid membrane did not disturb membrane integrity until the critical protein/lipid molar ratio was reached, when Cyt2Aa2 complexes and cytolytic activity were detected. The complexes are large aggregates that appeared as a ladder when separated by agarose gel electrophoresis. Interaction of Cyt2Aa2 with Aedes albopictus cells was investigated by confocal microscopy and total internal reflection fluorescent microscopy (TIRF). The results showed that Cyt2Aa2 binds on the cell membrane at an early stage without cell membrane disruption. Protein aggregation on the cell membrane was detected later which coincided with cell swelling. Cyt2Aa2 aggregations on supported lipid bilayers (SLBs) were visualized by AFM. The AFM topographic images revealed Cyt2Aa2 aggregates on the lipid bilayer at low protein concentration and subsequently disrupts the lipid bilayer by forming a lesion as the protein concentration increased. These results supported the mechanism whereby Cyt2Aa2 binds and aggregates on the lipid membrane leading to the formation of non-specific hole and disruption of the cell membrane.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Agregados Proteicos , Aedes/química , Aedes/microbiologia , Animais , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/patogenicidade , Bacillus thuringiensis/ultraestrutura , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular/genética , Endotoxinas/química , Proteínas Hemolisinas/química , Proteínas Hemolisinas/ultraestrutura , Larva/química , Larva/metabolismo , Larva/ultraestrutura , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Microscopia de Força Atômica , Ligação Proteica
9.
Microsc Res Tech ; 79(11): 1017-1023, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27474495

RESUMO

Protein-membrane interactions are still an important topic of investigation. One of the suitable experimental techniques used by the scientific community to address such question is atomic force microscopy. In a previous work, we have reported that the binding mechanism between the cytolytic and antimicrobial protein (Cyt2Aa2) and lipid/cholesterol bilayers was concentration-dependent, leading to either the formation of holes in the bilayer or aggregates. Here we study such binding mechanism as a function of time at low protein concentrations (10 µg/mL). We demonstrate that although holes are formed during the first stages of the protein-lipid interaction, a reparation process due to molecular mobility in the bilayer leads to a homogenous and isotropic protein-lipid/cholesterol layer within 3 hr. The combination of imaging, force spectroscopy, and phase contrast delivered information about topography dynamics (molecular mobility), layer thickness, and mechanical properties of the protein-lipid/cholesterol system. These results highlight the importance of the observation time in (such type of) protein-lipid interactions (at low protein concentrations).


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Colesterol/química , Colesterol/metabolismo , Endotoxinas/química , Endotoxinas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Toxinas de Bacillus thuringiensis , Microscopia de Força Atômica , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA