Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Sensors (Basel) ; 22(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35214491

RESUMO

Muscle-tendon power output is commonly assessed in the laboratory through the work loop, a paired analysis of muscle force and length during a cyclic task. Work-loop analysis of muscle-tendon function in out-of-lab conditions has been elusive due to methodological limitations. In this work, we combined kinetic and kinematic measures from shear wave tensiometry and inertial measurement units, respectively, to establish a wearable system for estimating work and power output from the soleus and gastrocnemius muscles during outdoor locomotion. Across 11 healthy young adults, we amassed 4777 strides of walking on slopes from -10° to +10°. Results showed that soleus work scales with incline, while gastrocnemius work is relatively insensitive to incline. These findings agree with previous results from laboratory-based studies while expanding technological capabilities by enabling wearable analysis of muscle-tendon kinetics. Applying this system in additional settings and activities could improve biomechanical knowledge and evaluation of protocols in scenarios such as rehabilitation, device design, athletics, and military training.


Assuntos
Tendão do Calcâneo , Dispositivos Eletrônicos Vestíveis , Tendão do Calcâneo/fisiologia , Fenômenos Biomecânicos/fisiologia , Humanos , Cinética , Locomoção/fisiologia , Músculo Esquelético/fisiologia , Adulto Jovem
2.
Sensors (Basel) ; 22(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336454

RESUMO

Shear wave tensiometry is a noninvasive approach for assessing in vivo tendon forces based on the speed of a propagating shear wave. Wave speed is measured by impulsively exciting a shear wave in a tendon and then assessing the wave travel time between skin-mounted accelerometers. Signal distortion with wave travel can cause errors in the estimated wave travel time. In this study, we investigated the use of a Kalman filter to fuse spatial and temporal accelerometer measurements of wave propagation. Spatial measurements consist of estimated wave travel times between accelerometers. Temporal measurements are the change in wave arrival at a fixed accelerometer between successive impulsive taps. The Kalman filter substantially improved the accuracy of estimated wave speeds when applied to simulated tensiometer data. The variability of estimated wave speed was reduced by ~55% in the presence of random sensor noise. It was found that increasing the number of accelerometers from two to three further reduced wave speed errors by 45%. The use of redundant accelerometers (>2) also improved the robustness of wave speed measures in the presence of uncertainty in accelerometer location. We conclude that the use of a Kalman filter and redundant accelerometers can enhance the fidelity of using shear wave tensiometers to track tendon wave speed and loading during movement.


Assuntos
Movimento , Tendões , Acelerometria , Imagens de Fantasmas , Pele
3.
J Appl Biomech ; 38(1): 58-66, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35045394

RESUMO

Trochlear groove geometry and the location of the tibial tubercle, where the patellar tendon inserts, have both been associated with patellofemoral instability and can be modified surgically. Although their effects on patellofemoral biomechanics have been investigated individually, the interaction between the two is unclear. The authors' aim was to use statistical shape modeling and musculoskeletal simulation to examine the effect of patellofemoral geometry on the relationship between tibial tubercle location and patellofemoral function. A statistical shape model was used to generate new knee geometries with trochlear grooves ranging from shallow to deep. A Monte Carlo approach was used to create 750 knee models by randomly selecting a geometry and randomly translating the tibial tubercle medially/laterally and anteriorly. Each knee model was incorporated into a musculoskeletal model, and an overground walking trial was simulated. Knees with shallow trochlear geometry were more sensitive to tubercle medialization with greater changes in lateral patella position (-3.0 mm/cm medialization shallow vs -0.6 mm/cm deep) and cartilage contact pressure (-0.51 MPa/cm medialization shallow vs 0.04 MPa/cm deep). However, knees with deep trochlear geometry experienced greater increases in medial cartilage contact pressure with medialization. This modeling framework has the potential to aid in surgical decision making.


Assuntos
Instabilidade Articular , Articulação Patelofemoral , Fenômenos Biomecânicos , Humanos , Articulação do Joelho , Patela , Articulação Patelofemoral/cirurgia , Tíbia/cirurgia
4.
J Biomech Eng ; 143(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34008841

RESUMO

The relationship between three-dimensional shape and patellofemoral mechanics is complicated. The Wiberg patella classification is a method of distinguishing shape differences in the axial plane of the patella that can be used to connect shape differences to observed mechanics. This study uses the Wiberg patella classification to differentiate variance in a statistical shape model describing changes in patella morphology and height. We investigate how patella morphology influences force distribution within the patellofemoral joint. The Wiberg type I patella has a more symmetrical medial and lateral facet while the type III patella has a larger lateral facet compared to medial. The second principal component of the statistical shape model described shape variation that qualitatively resembled the different Wiberg patellas. We generated patellofemoral morphologies from the statistical shape model and integrated them into a musculoskeletal model with a twelve degrees-of-freedom knee. We simulated an overground walking trial with these morphologies and recorded patellofemoral mechanics and ligament forces. An increase in patellar ligament force corresponded with an increase in patella height. Wiberg type III patellas had a sharper patella apex which related to lower ratios of quadriceps tendon forces to patellar ligament forces. The change in pivot point of the patella affects the ratio of forces as well as the patellofemoral reaction force. This study provides a better understanding of how patella morphology affects fundamental patella mechanics which may help identify at-risk populations for pathology development.


Assuntos
Ligamento Patelar
5.
Skeletal Radiol ; 50(1): 107-113, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32642791

RESUMO

OBJECTIVE: Use ultrashort echo time (UTE) magnetic resonance imaging to quantify bound water components of asymptomatic older Achilles tendons and investigate the relationship between UTE findings and imaging assessment of sub-clinical tendinopathy. MATERIALS AND METHODS: Thirteen young (age 25 ± 4.8) and thirteen older (age 67 ± 4.7) adults were tested. A UTE sequence was used to quantify the transverse relaxation times of bound ([Formula: see text]) and free ([Formula: see text]) water and the bound water fraction (Fs) in the Achilles tendon. Anatomical images were collected and graded by a musculoskeletal radiologist to identify signs of sub-clinical tendinopathy. Two-sample t tests were used to compare [Formula: see text], [Formula: see text], and Fs between age groups and between adults with and without sub-clinical tendinopathy. RESULTS: Older tendons exhibited a 60% longer [Formula: see text] (p = 0.004), similar [Formula: see text] (p = 0.86), and 5% smaller Fs (p = 0.048) than young tendons. Seven older adult tendons exhibited tendon thickening and increased signal intensity indicative of sub-clinical tendinopathy. This subset of tendons exhibited a 7% smaller bound water fraction (p = 0.02) and significantly longer [Formula: see text] (p < 0.001) than the normal tendons from young and older adults. CONCLUSION: Older adult tendons exhibited unique UTE signatures that are consistent with disruption of the collagen fiber network and changes in macromolecular content. UTE imaging metrics were sensitive to early indicators of tissue degeneration identified on anatomical images and hence could provide a quantitative biomarker by which to track changes in tissue health resulting from injury, disease, and treatment.


Assuntos
Tendão do Calcâneo , Tendinopatia , Tendão do Calcâneo/diagnóstico por imagem , Adulto , Idoso , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Tendinopatia/diagnóstico por imagem , Água , Adulto Jovem
6.
Sensors (Basel) ; 20(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858833

RESUMO

This study introduces a noninvasive wearable system for investigating tendon loading patterns during outdoor locomotion on variable terrain. The system leverages shear wave tensiometry, which is a new approach for assessing tendon load by tracking wave speed within the tissue. Our wearable tensiometry system uses a battery-operated piezoelectric actuator to induce micron-scale shear waves in a tendon. A data logger monitors wave propagation by recording from two miniature accelerometers mounted on the skin above the tendon. Wave speed is determined from the wave travel time between accelerometers. The wearable system was used to record Achilles tendon wave speed at 100 Hz during 1-km outdoor walking trials in nine young adults. Inertial measurement units (IMUs) simultaneously monitored participant position, walking speed, and ground incline. An analysis of 5108 walking strides revealed the coupled biomechanical effects of terrain slope and walking speed on tendon loading. Uphill slopes increased the tendon wave speed during push-off, whereas downhill slopes increased tendon wave speeds during early stance braking. Walking speed significantly modulated peak tendon wave speed on uphill slopes but had less influence on downhill slopes. Walking speed consistently induced greater early stance wave speeds for all slopes. These observations demonstrate that wearable shear wave tensiometry holds promise for evaluating tendon tissue kinetics in natural environments and uncontrolled movements. There are numerous practical applications of wearable tensiometry spanning orthopedics, athletics, rehabilitation, and ergonomics.


Assuntos
Tendão do Calcâneo/fisiologia , Velocidade de Caminhada , Dispositivos Eletrônicos Vestíveis , Adulto , Fenômenos Biomecânicos , Feminino , Marcha , Humanos , Cinética , Masculino , Adulto Jovem
7.
J Biomech Eng ; 141(12)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628469

RESUMO

The geometry of the patellofemoral joint affects function and pathology. However, the impact of trochlear groove depth on treatments for patellar instability and pain is not clear. Tibial tubercle osteotomy is a common surgical intervention for patellar instability where the tibial insertion of the patellar tendon (PT) is translated to align the extensor mechanism and stabilize the joint. The aim of this work was to investigate the interaction between trochlear groove depth and PT insertion and their effect on patellar stability. Patellofemoral geometry was modified based on a statistical shape model to create knees with a range of trochlear groove depths. A Monte Carlo approach was used and 750 instances of a musculoskeletal model were generated with varying geometry and anterior and medial transfer of the PT. Stability was assessed by applying a lateral perturbation force to the patella during simulation of overground walking. In knees with deep trochlear grooves, a medialized PT increased stability. However, in knees with shallow trochlear grooves, stability was maximized for tendon insertion ∼1 mm medial to its neutral location. This PT insertion also corresponded to the best alignment of the patella in the trochlear groove in these knees, indicating that good alignment may be important to maximizing stability. Anterior PT transfer had minimal effect on stability for all geometries. A better understanding of the effects of articular geometry and tubercle location on stability may aid clinicians in patient-specific surgical planning.

8.
J Appl Biomech ; 35(4): 280-289, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141436

RESUMO

Medial knee loading during stair negotiation in individuals with medial knee osteoarthritis, has only been reported in terms of joint moments, which may underestimate the knee loading. This study assessed knee contact forces (KCF) and contact pressures during different stair negotiation strategies. Motion analysis was performed in five individuals with medial knee osteoarthritis (52.8±11.0 years) and eight healthy subjects (51.0±13.4 years) while ascending and descending a staircase. KCF and contact pressures were calculated using a multi-body knee model while performing step-over-step at controlled and self-selected speed, and step-by-step strategies. At controlled speed, individuals with osteoarthritis showed decreased peak KCF during stair ascent but not during stair descent. Osteoarthritis patients showed higher trunk rotations in frontal and sagittal planes than controls. At lower self-selected speed, patients also presented reduced medial KCF during stair descent. While performing step-by-step, medial contact pressures decreased in osteoarthritis patients during stair descent. Osteoarthritis patients reduced their speed and increased trunk flexion and lean angles to reduce KCF during stair ascent. These trunk changes were less safe during stair descent where a reduced speed was more effective. Individuals should be recommended to use step-over-step during stair ascent and step-by-step during stair descent to reduce medial KCF.


Assuntos
Osteoartrite do Joelho/fisiopatologia , Subida de Escada/fisiologia , Velocidade de Caminhada/fisiologia , Atividades Cotidianas , Fenômenos Biomecânicos , Avaliação da Deficiência , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Medição da Dor , Projetos Piloto
9.
Arch Phys Med Rehabil ; 99(11): 2257-2262, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29709524

RESUMO

OBJECTIVE: To evaluate stiffness of infraspinatus muscle tissue, both with and without latent trigger points, using ultrasound shear wave elastography (SWE). The primary hypothesis is that muscle with a latent trigger point will demonstrate a discrete region of increased shear wave speed. The secondary hypothesis is that shear wave speed (SWS) in the region with the trigger point will be higher in patients compared with controls, and will be similar between the two groups in the uninvolved regions. DESIGN: Case-control. SETTING: Hospital-based outpatient physical therapy center. PARTICIPANTS: Convenience sample (N=18) of patients (6 female, 3 male, mean age=44) (range=31-61y) diagnosed with latent trigger points in infraspinatus and matched controls without trigger points. MAIN OUTCOME MEASURES: Shear wave speed (m/s). RESULTS: SWS of the latent trigger point (mean=4.09±SD1.4 m/s) did not differ from the adjacent muscle tissue (3.92±1.6 m/s, P>.05), but was elevated compared to corresponding tissue in controls (2.8±0.75 m/s, P=.02). SWS was generally greater in patients' uninvolved tissue (3.83±1.6 m/s) when compared to corresponding tissue in controls (2.62±0.2 m/s, P=.05). CONCLUSION: Although discrete regions of increased SWS corresponding to the trigger point were not observed in patients, evidence of generally increased muscle stiffness in infraspinatus was exhibited compared to healthy controls. Further study of additional muscles with SWE is warranted.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Doenças Musculares/diagnóstico por imagem , Manguito Rotador/diagnóstico por imagem , Pontos-Gatilho/diagnóstico por imagem , Ultrassonografia/métodos , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Musculares/fisiopatologia , Manguito Rotador/fisiopatologia , Pontos-Gatilho/fisiopatologia
10.
J Appl Biomech ; 34(1): 14-22, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28787221

RESUMO

The purpose of this study was to evaluate localized patterns of patellar tendon deformation during passive knee flexion. Ultrasound radiofrequency data were collected from the patellar tendons of 20 healthy young adults during knee flexion over a range of motion of 50°-90° of flexion. A speckle tracking approach was used to compute proximal and distal tendon displacements and elongations. Nonuniform tissue displacements were visible in the proximal tendon (P < .001), with the deep tendon undergoing more distal displacement than the superficial tendon. In the distal tendon, more uniform tendon motion was observed. Spatial variations in percent elongation were also observed, but these varied along the length of the tendon (P < .002), with the proximal tendon remaining fairly isometric while the distal tendon underwent slight elongation. These results suggest that even during passive flexion the tendon undergoes complex patterns of deformation. Proximal tendon nonuniformity may arise from its complex anatomy where the deep tendon inserts onto the patella and the superficial tendon extends to the quadriceps tendon. Such heterogeneity is not captured in whole tendon average assessments, emphasizing the relevance of considering localized tendon mechanics, which may be key to understanding tendon behavior and precursors to injury and disease.


Assuntos
Patela , Amplitude de Movimento Articular , Tendões , Ultrassonografia , Adulto , Feminino , Masculino , Fenômenos Biomecânicos , Voluntários Saudáveis , Patela/diagnóstico por imagem , Patela/fisiologia , Amplitude de Movimento Articular/fisiologia , Tendões/diagnóstico por imagem , Tendões/fisiologia , Ultrassonografia/métodos , Humanos
11.
J Biomech Eng ; 138(2): 021017, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26769446

RESUMO

The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial-lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and -23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement.


Assuntos
Artroplastia do Joelho , Fêmur/anatomia & histologia , Fêmur/fisiologia , Ligamentos/anatomia & histologia , Modelagem Computacional Específica para o Paciente , Tíbia/anatomia & histologia , Tíbia/fisiologia , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Marcha , Humanos , Ligamentos/fisiologia , Masculino , Método de Monte Carlo , Estresse Mecânico , Suporte de Carga
12.
J Biomech Eng ; 136(2): 021033, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24390129

RESUMO

This study introduces a framework for co-simulating neuromuscular dynamics and knee joint mechanics during gait. A knee model was developed that included 17 ligament bundles and a representation of the distributed contact between a femoral component and tibial insert surface. The knee was incorporated into a forward dynamics musculoskeletal model of the lower extremity. A computed muscle control algorithm was then used to modulate the muscle excitations to drive the model to closely track measured hip, knee, and ankle angle trajectories of a subject walking overground with an instrumented knee replacement. The resulting simulations predicted the muscle forces, ligament forces, secondary knee kinematics, and tibiofemoral contact loads. Model-predicted tibiofemoral contact forces were of comparable magnitudes to experimental measurements, with peak medial (1.95 body weight (BW)) and total (2.76 BW) contact forces within 4-17% of measured values. Average root-mean-square errors over a gait cycle were 0.26, 0.42, and 0.51 BW for the medial, lateral, and total contact forces, respectively. The model was subsequently used to predict variations in joint contact pressure that could arise by altering the frontal plane joint alignment. Small variations (±2 deg) in the alignment of the femoral component and tibial insert did not substantially affect the location of contact pressure, but did alter the medio-lateral distribution of load and internal tibia rotation in swing. Thus, the computational framework can be used to virtually assess the coupled influence of both physiological and design factors on in vivo joint mechanics and performance.


Assuntos
Articulação do Joelho/fisiologia , Modelos Neurológicos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Junção Neuromuscular/fisiologia , Transmissão Sináptica/fisiologia , Caminhada/fisiologia , Idoso de 80 Anos ou mais , Simulação por Computador , Marcha/fisiologia , Humanos , Masculino , Músculo Esquelético/inervação , Amplitude de Movimento Articular/fisiologia
13.
J Biomech Eng ; 136(5): 051004, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24509523

RESUMO

Tears on the bursal and articular sides of the rotator cuff tendons are known to behave differently and strain is thought to play a role in this difference. This study investigates the effect of tear location on the changes in three strain measurements (grip-to-grip, insertion, and mid-substance tissue) in a sheep infraspinatus tendon model during axial loading. We introduced a 14 mm wide defect near the insertion from either the articular or bursal side of the tendon to three depths (3 mm, 7 mm & full) progressively. For each condition, tendons were sinusoidally stretched (4% at 0.5 Hz) while insertion and mid-substance strains were tracked with surface markers. For a fixed load, grip-to-grip strain increased significantly compared to intact for both cuts. Insertion strain increased significantly for the bursal-side defect immediately but not for the articular-side until the 66% cut. Mid-substance tissue strain showed no significant change for partial thickness articular-side defects and a significant decrease for bursal-side defects after the 66% cut. All full thickness cuts exhibited negligible mid-substance tissue strain change. Our results suggest that the tendon strain patterns are more sensitive to defects on the bursal side, and that partial thickness tears tend to induce localized strain concentrations in regions adjacent to the damaged tissue.


Assuntos
Músculos/lesões , Entorses e Distensões , Traumatismos dos Tendões , Animais , Feminino , Teste de Materiais , Ovinos , Entorses e Distensões/patologia , Traumatismos dos Tendões/patologia , Resistência à Tração
14.
J Biomech ; 167: 112071, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593721

RESUMO

Ligaments and tendons undergo nonuniform deformation during movement. While deformations can be imaged, it remains challenging to use such information to infer regional tissue loading. Shear wave tensiometry is a promising noninvasive technique to gauge axial stress and is premised on a tensioned beam model. However, it is unknown whether tensiometry can predict regional stress in a nonuniformly loaded structure. The objectives of this study were to (1) determine whether regional shear wave speed tracks regional axial stress in nonuniformly loaded fibrous soft tissues, and (2) determine the sensitivity of regional axial stress and shear wave speed to nonuniform load distribution and fiber alignment. We created a representative set of 12,000 dynamic finite element models of a fibrous soft tissue with probabilistic variations in fiber alignment, stiffness, and aspect ratio. In each model, we applied a randomly selected nonuniform load distribution, and then excited a shear wave and tracked its regional propagation. We found that regional shear wave speed was an excellent predictor of the regional axial stress (RMSE = 0.57 MPa) and that the nature of the regional shear wave speed-stress relationship was consistent with a tensioned beam model (R2 = 0.99). Variations in nonuniform load distribution and fiber alignment did not substantially alter the wave speed-stress relationship, particularly at higher loads. Thus, these findings suggests that shear wave tensiometry could provide a quantitative estimate of regional tissue stress in ligaments and tendons.


Assuntos
Técnicas de Imagem por Elasticidade , Tendões , Movimento , Ligamentos , Estresse Mecânico , Carmustina , Etoposídeo
15.
Med Sci Sports Exerc ; 56(6): 1077-1084, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240495

RESUMO

PURPOSE: Understanding muscle-tendon forces (e.g., triceps surae and Achilles tendon) during locomotion may aid in the assessment of human performance, injury risk, and rehabilitation progress. Shear wave tensiometry is a noninvasive technique for assessing in vivo tendon forces that has been recently adapted to a wearable technology. However, previous laboratory-based and outdoor tensiometry studies have not evaluated running. This study was undertaken to assess the capacity for shear wave tensiometry to produce valid measures of Achilles tendon loading during running at a range of speeds. METHODS: Participants walked (1.34 m·s -1 ) and ran (2.68, 3.35, and 4.47 m·s -1 ) on an instrumented treadmill while shear wave tensiometers recorded Achilles tendon wave speeds simultaneously with whole-body kinematic and ground reaction force data. A simple isometric task allowed for the participant-specific conversion of Achilles tendon wave speeds to forces. Achilles tendon forces were compared with ankle torque measures obtained independently via inverse dynamics analyses. Differences in Achilles tendon wave speed, Achilles tendon force, and ankle torque across walking and running speeds were analyzed with linear mixed-effects models. RESULTS: Achilles tendon wave speed, Achilles tendon force, and ankle torque exhibited similar temporal patterns across the stance phase of walking and running. Significant monotonic increases in peak Achilles tendon wave speed (56.0-83.8 m·s -1 ), Achilles tendon force (44.0-98.7 N·kg -1 ), and ankle torque (1.72-3.68 N·m·(kg -1 )) were observed with increasing locomotion speed (1.34-4.47 m·s -1 ). Tensiometry estimates of peak Achilles tendon force during running (8.2-10.1 body weights) were within the range of those estimated previously via indirect methods. CONCLUSIONS: These results set the stage for using tensiometry to evaluate Achilles tendon loading during unobstructed athletic movements, such as running, performed in the field.


Assuntos
Tendão do Calcâneo , Corrida , Dispositivos Eletrônicos Vestíveis , Humanos , Tendão do Calcâneo/fisiologia , Corrida/fisiologia , Fenômenos Biomecânicos , Masculino , Adulto Jovem , Adulto , Feminino , Torque , Caminhada/fisiologia , Músculo Esquelético/fisiologia
16.
Magn Reson Med ; 69(5): 1310-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22693040

RESUMO

This study investigated the use of dynamic, volumetric MRI to measure 3D skeletal motion. Ten healthy subjects were positioned on a MR-compatible knee loading device and instructed to harmonically flex and extend their knee at 0.5 Hz. The device induced active quadriceps loading with knee flexion, similar to the load acceptance phase of gait. Volumetric images were continuously acquired for 5 min using a 3D cine spoiled gradient-echo sequence in conjunction with vastly under-sampled isotropic projection reconstruction. Knee angle was simultaneously monitored and used retrospectively to sort images into 60 frames over the motion cycle. High-resolution static knee images were acquired and segmented to create subject-specific models of the femur and tibia. At each time frame, bone positions and orientations were determined by automatically registering the skeletal models to the dynamic images. Three-dimensional tibiofemoral translations and rotations were consistent across healthy subjects. Internal tibia rotations of 7.8±3.5° were present with 35.8±3.8° of knee flexion, a pattern consistent with knee kinematic measures during walking. We conclude that vastly under-sampled isotropic projection reconstruction imaging is a promising approach for noninvasively measuring 3D joint kinematics, which may be useful for assessing cartilage contact and investigating the causes and treatment of joint abnormalities.


Assuntos
Fêmur/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Articulação do Joelho/fisiologia , Imageamento por Ressonância Magnética/métodos , Amplitude de Movimento Articular/fisiologia , Tíbia/fisiologia , Algoritmos , Feminino , Fêmur/anatomia & histologia , Humanos , Aumento da Imagem/métodos , Articulação do Joelho/anatomia & histologia , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tíbia/anatomia & histologia , Adulto Jovem
17.
J Biomech ; 157: 111699, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429177

RESUMO

Shear wave tensiometry is a noninvasive technique for measuring tendon loading during activity based on the speed of a shear wave traveling along the tendon. Shear wave speed has been shown to modulate with axial stress, but calibration is required to obtain absolute measures of tendon loading. However, the current technique only makes use of wave speed, whereas other characteristics of the wave (e.g., amplitude, frequency content) may also vary with tendon loading. It is possible that these data could be used in addition to wave speed to circumvent the need for calibration. Given the potential complex relationships to tendon loading, and the lack of an analytical model to guide the use of these data, it is sensible to use a machine learning approach. Here, we used an ensemble neural network approach to predict inverse dynamics estimates of Achilles tendon stress from shear wave tensiometry data collected in a prior study. Neural network-predicted stresses were highly correlated with stance phase inverse dynamics estimates for walking (R2 = 0.89 ± 0.06) and running (R2 = 0.87 ± 0.11) data reserved for neural network model testing and not included in model training. Additionally, error between neural network-predicted and inverse dynamics-estimated stress was reasonable (walking: RMSD = 11 ± 2% of peak load; running: 25 ± 14%). Results of this pilot analysis suggest that a machine learning approach could reduce the reliance of shear wave tensiometry on calibration and expand its usability in many settings.


Assuntos
Tendão do Calcâneo , Corrida , Fenômenos Biomecânicos , Caminhada , Redes Neurais de Computação
18.
J Mech Behav Biomed Mater ; 147: 106138, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782988

RESUMO

Shear wave tensiometry is a noninvasive approach for gauging tendon loads based on shear wave speed. Transient shear waves are induced and tracked via sensors secured to the skin overlying a superficial tendon. Wave speeds measured in vivo via tensiometry modulate with tendon load but are lower than that predicted by a tensioned beam model of an isolated tendon, which may be due to the added inertia of adjacent tissues. The objective of this study was to investigate the effects of adjacent fat tissue on shear wave propagation measurements in axially loaded tendons. We created a layered, dynamic finite element model of an elliptical tendon surrounded by subcutaneous fat. Transient shear waves were generated via an impulsive excitation delivered across the tendon or through the subcutaneous fat. The layered models demonstrated dispersive behavior with phase velocity increasing with frequency. Group shear wave speed could be ascertained via dispersion analysis or time-to-peak measures at sequential spatial locations. Simulated wave speeds in the tendon and adjacent fat were similar and modulated with tendon loading. However, wave speed magnitudes were consistently lower in the layered models than in an isolated tendon. For all models, the wave speed-stress relationship was well described by a tensioned beam model after accounting for the added inertia of the adjacent tissues. These results support the premise that externally excited shear waves are measurable in subcutaneous fat and modulate with axial loading in the underlying tendon. The model suggests that adjacent tissues add inertia to the system, which in turn lowers shear wave speeds. This information must be considered when using tensiometry as a clinical or research tool to infer absolute tendon loading.


Assuntos
Técnicas de Imagem por Elasticidade , Tendões , Suporte de Carga , Tecido Adiposo , Carmustina , Etoposídeo , Técnicas de Imagem por Elasticidade/métodos
19.
Micromachines (Basel) ; 15(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38258151

RESUMO

Shear wave tensiometry is a noninvasive method for directly measuring wave speed as a proxy for force in tendons during dynamic activities. Traditionally, tensiometry has used broadband excitation pulses and measured the wave travel time between two sensors. In this work, we demonstrate a new method for tracking phase velocity using shaped excitations and measurements from a single sensor. We observed modulation of phase velocity in the Achilles tendon that was generally consistent with wave speed measures obtained via broadband excitation. We also noted a frequency dependence of phase velocity, which is expected for dispersive soft tissues. The implementation of this method could enhance the use of noninvasive wave speed measures to characterize tendon forces. Further, the approach allows for the design of smaller shear wave tensiometers usable for a broader range of tendons and applications.

20.
J Orthop Res ; 41(10): 2315-2321, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37366039

RESUMO

The Achilles tendon consists of three subtendons that transmit force from the triceps surae muscles to the calcaneus. Individual differences have been identified in Achilles subtendon morphology and twist in cadavers, which may have implications for triceps surae mechanics and function. High-field magnetic resonance imaging (MRI) can be used to identify boundaries within multi-bundle tissues, which could then enable studies of subtendon structure-function relationships in humans. The objective of this study was to use high-field MRI (7T) to image and reconstruct Achilles subtendons arising from the triceps surae muscles. We imaged the dominant lower leg of a cohort of healthy human subjects (n = 10) using a tuned musculoskeletal sequence (double echo steady state sequence, 0.4 mm isotropic voxels). We then characterized the cross-sectional area and orientation of each subtendon between the MTJ and calcaneal insertion. Image collection and segmentation was repeated to assess repeatability. Subtendon morphometry varied across subjects, with average subtendon areas of 23.5 ± 8.9 mm2 for the medial gastrocnemius, 25.4 ± 8.9 mm2 for the lateral gastrocnemius, and 13.7 ± 5.9 mm2 for the soleus subtendons. Repeatable subject-specific variations in size and position of each subtendon were identified over two visits, expanding on prior knowledge that high variability exists in Achilles subtendon morphology across subjects.


Assuntos
Tendão do Calcâneo , Calcâneo , Humanos , Tendão do Calcâneo/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Calcâneo/anatomia & histologia , Imageamento por Ressonância Magnética , Perna (Membro)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA