Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Hum Evol ; 185: 103454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977021

RESUMO

The genus Macaca includes medium- to large-bodied monkeys and represents one of the most diverse primate genera, also having a very large geographic range. Nowadays, wild macaque populations are found in Asia and Africa, inhabiting a wide array of habitats. Fossil macaques were also present in Europe from the Late Miocene until the Late Pleistocene. Macaques are considered ecologically flexible monkeys that exhibit highly opportunistic dietary strategies, which may have been critical to their evolutionary success. Nevertheless, available ecological information regarding fossil European species is very sparse, limiting our knowledge of their evolutionary history in this geographic area. To further our understanding of fossil European macaque ecology, we investigated the dietary ecology of Macaca majori, an insular endemic species from Sardinia. In particular, we characterized the dental capabilities and potential dietary adaptations of M. majori through dental topographic and enamel thickness analyses of two M2s from the Early Pleistocene site of Capo Figari (1.8 Ma). We also assessed its diet through dental microwear texture analysis, while the microwear texture of M. majori was also compared with microwear textures from other European fossil macaques from mainland Europe. The dental topographic and enamel thickness analyses suggest that M. majori frequently consumes hard/mechanically challenging and/or abrasive foods. The results of the dental microwear analysis are consistent with this interpretation and further suggest that M. majori probably exhibited more durophagous dietary habits than mainland Plio-Pleistocene macaques. Overall, our results indicate that M. majori probably occupied a different dietary niche compared to its mainland fossil relatives, which suggests that they may have inhabited different paleoenvironments.


Assuntos
Fósseis , Macaca , Animais , Itália , Primatas , Dieta/veterinária
2.
J Hum Evol ; 168: 103199, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667203

RESUMO

Currently, very little is known about the ecology of extinct Eurasian cercopithecids. Dietary information is crucial in understanding the ecological adaptations and diversity of extinct cercopithecids and the evolution of this family. For example, the colobine genus Dolichopithecus is represented by multiple large-bodied species that inhabited Eurasia during the Pliocene-Early Pleistocene. The available evidence, though limited, suggests semiterrestrial locomotion, which contrasts with most extant African and Asian colobines that exhibit morphological and physiological adaptations for arboreality and folivory. These differences raise questions regarding the dietary specialization of early colobine taxa and how/if that influenced their dispersion out of Africa and into Eurasia. To further our understanding of the ecology of Plio-Pleistocene cercopithecids, we characterized the dental capabilities and potential dietary adaptations of Dolichopithecus ruscinensis through dental topographic and enamel thickness analyses on an M1 from the locality of Serrat d'en Vacquer, Perpignan (France). We also assessed the feeding behavior of D. ruscinensis through dental microwear texture analysis on a broad sample of fossil molars from fossil sites in France, Greece, Bulgaria, and Romania. Dental topographic and enamel thickness analyses suggest that D. ruscinensis could efficiently process a wide range of foods. Results of the dental microwear texture analysis suggest that its diet ranged from folivory to the consumption of more mechanically challenging foods. Collectively, this suggests a more opportunistic feeding behavior for Dolichopithecus than characteristic of most extant colobines.


Assuntos
Colobinae , Fósseis , Animais , Colobinae/anatomia & histologia , Dieta , Ecologia , Comportamento Alimentar , Dente Molar/anatomia & histologia
3.
Am J Phys Anthropol ; 171(1): 110-119, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675108

RESUMO

OBJECTIVES: Chewing efficiency plays an important role in the survival and distribution of primates. Yet, little is known about the intra-specific variation of chewing efficiency. The purpose of this study is to report the pattern of seasonal and regional variation in chewing efficiency among Yakushima Japanese macaques (Macaca fuscata yakui). MATERIALS AND METHODS: Fecal samples of Yakushima Japanese macaques were collected from lowland, highland and summit areas in Yakushima between July 2015 and March 2016 (n = 236). Using sieving analysis, we compared fecal particle size (dMEAN) and proportion of finest particles p(0) between different geographical areas and seasons. RESULTS: Seasonally, in the lowland zone, there was a non-significant decrease in dMEAN during spring, while p(0) was significantly higher during summer than it was during winter and spring. Regionally, dMEAN was higher in the summit zone than it was in other areas during autumn, while p(0) was also higher in the summit zone. CONCLUSIONS: While seasonal variation in dMEAN can be explained by the reported difference in the proportions of food categories in diet between seasons, its influence is mitigated, possibly by the selective feeding of less mechanically challenging parts in each category. Regional variation in dMEAN and p(0) may be the results of bamboo consumption in this area. Combining our data with studies that focus on seasonal and regional variations of food properties or gut microbes might provide a better understanding of the relation between diet, chewing and digestion in Yakushima macaques.


Assuntos
Dieta/veterinária , Macaca fuscata/fisiologia , Mastigação , Animais , Japão , Estações do Ano
4.
Am J Phys Anthropol ; 170(2): 260-274, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31381127

RESUMO

OBJECTIVES: Topographic estimates of dental relief are now commonly used to make dietary inferences from the teeth of extant and extinct primates. We thoroughly compared commonly used relief estimates in an effort to help researchers decide which variable best suits their objectives. MATERIALS AND METHODS: We combined a total of three datasets: five theoretical models built to compare the effect of tooth complexity and basin depth on relief estimates, a dataset of 110 lower molars of prosimians, and a dataset of 25 upper molars of apes. We investigated intra-mesh variation and tooth average relief, estimated from slope and three different relief indices, according to four criteria: (1) the ability to map relief on topographic maps, (2) the correlation with other relief estimates, (3) the ability to separate high-relief molars of folivores from deep-relief molars of insectivores in prosimians, and (4) the influence of surface complexity on relief estimates in apes. RESULTS: We found that polygon slope and relief index are linked by a mathematical relation. Tooth average slope and all relief indices are strongly correlated. In contrast, relief estimates are moderately correlated to cusp elevation. One relief index of four relief estimates had an excellent ability to separate high-relief from deep-relief molars in prosimians, whereas slope could not separate them. No significant effect of tooth complexity on dental relief could be detected in apes. CONCLUSIONS: Because slope and relief indices are highly correlated, it is strongly recommended not to combine them in multivariate analysis. Still, slope and relief indices show interesting differences in scaling, graphical representation, computation method, and ability to separate high-relief and deep-relief molars. Our results also suggest that slope and relief indices can vary independently of tooth complexity and are moderately affected by mean cusp elevation in apes.


Assuntos
Hominidae/anatomia & histologia , Imageamento Tridimensional/métodos , Dente Molar , Odontometria/métodos , Strepsirhini/anatomia & histologia , Animais , Antropologia Física , Modelos Estatísticos , Dente Molar/anatomia & histologia , Dente Molar/diagnóstico por imagem
5.
J Hum Evol ; 112: 79-92, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29037418

RESUMO

Extant colobine monkeys have been historically described as specialized folivores. However, reports on both their behavior and dental metrics tend to ascribe a more varied diet to them. In particular, several species, such as Pygathrix nemaeus and Rhinopithecus roxellana, are dedicated seasonal seed eaters. They use the lophs on their postcanine teeth to crack open the hard endocarp that protects some seeds. This raises the question of whether the bilophodont occlusal pattern of colobine monkeys first evolved as an adaptation to folivory or sclerocarpic foraging. Here, we assess the sclerocarpic foraging ability of the oldest European fossil colobine monkey, Mesopithecus. We use computed microtomograpy to investigate the three-dimensional (3D) dental topography and enamel thickness of upper second molars ascribed to the late Miocene species Mesopithecus pentelicus from Pikermi, Greece. We compare M. pentelicus to a sample of extant Old World monkeys encompassing a wide range of diets. Furthermore, we combine classic dietary categories such as folivory with alternative categories that score the ability to crack, grind and shear mechanically challenging food. The 3D dental topography of M. pentelicus predicts an ability to crack and grind hard foods such as seeds. This is consistent with previous results obtained from dental microwear analysis. However, its relatively thin enamel groups M. pentelicus with other folivorous cercopithecids. We interpret this as a morphological trade-off between the necessity to avoid tooth failure resulting from hard food consumption and the need to process a high amount of leafy material. Our study demonstrates that categories evaluating the cracking, grinding or shearing ability, traditional dietary categories, and dental topography combine well to make a powerful tool for the investigation of diet in extant and extinct primates.


Assuntos
Colobinae/anatomia & histologia , Dieta , Fósseis/anatomia & histologia , Dente Molar/anatomia & histologia , Animais , Colobinae/fisiologia , Grécia , Microtomografia por Raio-X
6.
Am J Primatol ; 79(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28150439

RESUMO

Although conveying an indisputable morphological and behavioral signal, traditional dietary categories such as frugivorous or folivorous tend to group a wide range of food mechanical properties together. Because food/tooth interactions are mostly mechanical, it seems relevant to investigate the dental morphology of primates based on mechanical categories. However, existing mechanical categories classify food by its properties but cannot be used as factors to classify primate dietary habits. This comes from the fact that one primate species might be adapted to a wide range of food mechanical properties. To tackle this issue, what follows is an original framework based on action-related categories. The proposal here is to classify extant primates based on the range of food mechanical properties they can process through one given action. The resulting categories can be used as factors to investigate the dental tools available to primates. Furthermore, cracking, grinding, and shearing categories assigned depending on the hardness and the toughness of food are shown to be supported by morphological data (3D relative enamel thickness) and topographic data (relief index, occlusal complexity, and Dirichlet normal energy). Inferring food mechanical properties from dental morphology is especially relevant for the study of extinct primates, which are mainly documented by dental remains. Hence, we use action-related categories to investigate the molar morphology of an extinct colobine monkey Mesopithecus pentelicus from the Miocene of Pikermi, Greece. Action-related categories show contrasting results compared with classical categories and give us new insights into the dietary adaptations of this extinct primate. Finally, we provide some possible directions for future research aiming to test action-related categories. In particular, we suggest acquiring more data on mechanically challenging fallback foods and advocate the use of other food mechanical properties such as abrasiveness. The development of new action-related dental metrics is also crucial for primate dental studies.


Assuntos
Dieta , Comportamento Alimentar , Primatas , Desgaste dos Dentes , Animais , Alimentos
7.
J Anat ; 227(3): 277-85, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26278931

RESUMO

Anthracotheres are a fossil family of 'Suiformes' from the Old World, North and Central America. They are known from the middle Eocene to the late Pliocene, and are suggested to be the stem group of Hippopotamidae. Yet, their soft anatomy remains poorly known. In this study we describe the virtual endocast of the late Oligocene anthracothere Microbunodon minimum, reconstructed using microtomography, as well as the natural endocast of Merycopotamus medioximus from the late Miocene. These are the first anthracothere endocasts ever described. Particular attention is given to the relative proportions of the brain, the neocortex, the cerebellum and the olfactory bulbs. The 'backward shift' of the pituitary of M. minimum, and the possible presence of a K lobe in M. medioximus, is discussed. Previous statements that some endocranial characters were subject to convergence among mammals are also corroborated.


Assuntos
Artiodáctilos/anatomia & histologia , Encéfalo/anatomia & histologia , Fósseis/anatomia & histologia , Animais , Evolução Biológica , Mamíferos/anatomia & histologia , Bulbo Olfatório/anatomia & histologia , Filogenia , Microtomografia por Raio-X
8.
Evolution ; 75(8): 1983-1997, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34131927

RESUMO

Extant colobine monkeys are specialized leaf eaters. But during the late Miocene, western Eurasia was home to colobines that were less efficient at chewing leaves than they were at breaking seed shells. To understand the link between folivory and granivory in this lineage, the dietary niche of Mesopithecus delsoni and Mesopithecus pentelicus was investigated in southeastern Europe, where a major environmental change occurred during the late Miocene. We combined dental topographic estimates of chewing efficiency with dental microwear texture analysis of enamel wear facets. Mesopithecus delsoni was more efficient at chewing leaves than M. pentelicus, the dental topography of which matches an opportunistic seed eater. Concurrently, microwear complexity increases in M. pentelicus, especially in the northernmost localities corresponding to present-day Bulgaria. This is interpreted as a dietary shift toward hard foods such as seeds or tubers, which is consistent with the savanna and open mixed forest biomes that covered Bulgaria during the Tortonian. The fact that M. delsoni was better adapted to folivory and consumed a lower amount of hard foods than M. pentelicus suggests that colobines either adapted to folivory before their dispersal to Europe or evolved adaptations to leaf consumption in multiple occurrences.


Assuntos
Colobinae , Animais , Dieta , Europa (Continente) , Fósseis , Folhas de Planta
9.
Front Physiol ; 8: 524, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785226

RESUMO

Enamel thickness is highly susceptible to natural selection because thick enamel may prevent tooth failure. Consequently, it has been suggested that primates consuming stress-limited food on a regular basis would have thick-enameled molars in comparison to primates consuming soft food. Furthermore, the spatial distribution of enamel over a single tooth crown is not homogeneous, and thick enamel is expected to be more unevenly distributed in durophagous primates. Still, a proper methodology to quantitatively characterize enamel 3D distribution and test this hypothesis is yet to be developed. Unworn to slightly worn upper second molars belonging to 32 species of anthropoid primates and corresponding to a wide range of diets were digitized using high resolution microcomputed tomography. In addition, their durophagous ability was scored from existing literature. 3D average and relative enamel thickness were computed based on the volumetric reconstruction of the enamel cap. Geometric estimates of their average and relative enamel-dentine distance were also computed using 3D dental topography. Both methods gave different estimations of average and relative enamel thickness. This study also introduces pachymetric profiles, a method inspired from traditional topography to graphically characterize thick enamel distribution. Pachymetric profiles and topographic maps of enamel-dentine distance are combined to assess the evenness of thick enamel distribution. Both pachymetric profiles and topographic maps indicate that thick enamel is not significantly more unevenly distributed in durophagous species, except in Cercopithecidae. In this family, durophagous species such as mangabeys are characterized by an uneven thick enamel and high pachymetric profile slopes at the average enamel thickness, whereas non-durophagous species such as colobine monkeys are not. These results indicate that the distribution of thick enamel follows different patterns across anthropoids. Primates might have developed different durophagous strategies to answer the selective pressure exerted by stress-limited food.

10.
PLoS One ; 10(9): e0138802, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26406597

RESUMO

The form of two hard tissues of the mammalian tooth, dentine and enamel, is the result of a combination of the phylogenetic inheritance of dental traits and the adaptive selection of these traits during evolution. Recent decades have been significant in unveiling developmental processes controlling tooth morphogenesis, dental variation and the origination of dental novelties. The enamel-dentine junction constitutes a precursor for the morphology of the outer enamel surface through growth of the enamel cap which may go along with the addition of original features. The relative contribution of these two tooth components to morphological variation and their respective response to natural selection is a major issue in paleoanthropology. This study will determine how much enamel morphology relies on the form of the enamel-dentine junction. The outer occlusal enamel surface and the enamel-dentine junction surface of 76 primate second upper molars are represented by polygonal meshes and investigated using tridimensional topometrical analysis. Quantitative criteria (elevation, inclination, orientation, curvature and occlusal patch count) are introduced to show that the enamel-dentine junction significantly constrains the topographical properties of the outer enamel surface. Our results show a significant correlation for elevation, orientation, inclination, curvature and occlusal complexity between the outer enamel surface and the enamel dentine junction for all studied primate taxa with the exception of four modern humans for curvature (p<0.05). Moreover, we show that, for all selected topometrical parameters apart from occlusal patch count, the recorded correlations significantly decrease along with enamel thickening in our sample. While preserving tooth integrity by providing resistance to wear and fractures, the variation of enamel thickness may modify the curvature present at the occlusal enamel surface in relation to enamel-dentine junction, potentially modifying dental functionalities such as blunt versus sharp dental tools. In terms of natural selection, there is a balance between increasing tooth resistance and maintaining efficient dental tools. In this sense the enamel cap acts as a functional buffer for the molar occlusal pattern. In primates, results suggest a primary emergence of dental novelties on the enamel-dentine junction and a secondary transposition of these novelties with no or minor modifications of dental functionalities by the enamel cap. Whereas enamel crenations have been reported by previous studies, our analysis do not support the presence of enamel tubercles without dentine relief nuclei. As is, the enamel cap is, at most, a secondary source of morphological novelty.


Assuntos
Esmalte Dentário/anatomia & histologia , Dentina/anatomia & histologia , Dente Molar/anatomia & histologia , Primatas/anatomia & histologia , Animais , Evolução Biológica , Esmalte Dentário/diagnóstico por imagem , Dentina/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Dente Molar/diagnóstico por imagem , Radiografia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA