Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sensors (Basel) ; 23(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139738

RESUMO

In the realm of intelligent sensor systems, the dependence on Artificial Intelligence (AI) applications has heightened the importance of interpretability. This is particularly critical for opaque models such as Deep Neural Networks (DNN), as understanding their decisions is essential, not only for ethical and regulatory compliance, but also for fostering trust in AI-driven outcomes. This paper introduces the novel concept of a Computer Vision Interpretability Index (CVII). The CVII framework is designed to emulate human cognitive processes, specifically in tasks related to vision. It addresses the intricate challenge of quantifying interpretability, a task that is inherently subjective and varies across domains. The CVII is rigorously evaluated using a range of computer vision models applied to the COCO (Common Objects in Context) dataset, a widely recognized benchmark in the field. The findings established a robust correlation between image interpretability, model selection, and CVII scores. This research makes a substantial contribution to enhancing interpretability for human comprehension, as well as within intelligent sensor applications. By promoting transparency and reliability in AI-driven decision-making, the CVII framework empowers its stakeholders to effectively harness the full potential of AI technologies.

2.
J Biomed Inform ; 54: 141-57, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25661592

RESUMO

BACKGROUND: Literature-based discovery (LBD) is characterized by uncovering hidden associations in non-interacting scientific literature. Prior approaches to LBD include use of: (1) domain expertise and structured background knowledge to manually filter and explore the literature, (2) distributional statistics and graph-theoretic measures to rank interesting connections, and (3) heuristics to help eliminate spurious connections. However, manual approaches to LBD are not scalable and purely distributional approaches may not be sufficient to obtain insights into the meaning of poorly understood associations. While several graph-based approaches have the potential to elucidate associations, their effectiveness has not been fully demonstrated. A considerable degree of a priori knowledge, heuristics, and manual filtering is still required. OBJECTIVES: In this paper we implement and evaluate a context-driven, automatic subgraph creation method that captures multifaceted complex associations between biomedical concepts to facilitate LBD. Given a pair of concepts, our method automatically generates a ranked list of subgraphs, which provide informative and potentially unknown associations between such concepts. METHODS: To generate subgraphs, the set of all MEDLINE articles that contain either of the two specified concepts (A, C) are first collected. Then binary relationships or assertions, which are automatically extracted from the MEDLINE articles, called semantic predications, are used to create a labeled directed predications graph. In this predications graph, a path is represented as a sequence of semantic predications. The hierarchical agglomerative clustering (HAC) algorithm is then applied to cluster paths that are bounded by the two concepts (A, C). HAC relies on implicit semantics captured through Medical Subject Heading (MeSH) descriptors, and explicit semantics from the MeSH hierarchy, for clustering. Paths that exceed a threshold of semantic relatedness are clustered into subgraphs based on their shared context. Finally, the automatically generated clusters are provided as a ranked list of subgraphs. RESULTS: The subgraphs generated using this approach facilitated the rediscovery of 8 out of 9 existing scientific discoveries. In particular, they directly (or indirectly) led to the recovery of several intermediates (or B-concepts) between A- and C-terms, while also providing insights into the meaning of the associations. Such meaning is derived from predicates between the concepts, as well as the provenance of the semantic predications in MEDLINE. Additionally, by generating subgraphs on different thematic dimensions (such as Cellular Activity, Pharmaceutical Treatment and Tissue Function), the approach may enable a broader understanding of the nature of complex associations between concepts. Finally, in a statistical evaluation to determine the interestingness of the subgraphs, it was observed that an arbitrary association is mentioned in only approximately 4 articles in MEDLINE on average. CONCLUSION: These results suggest that leveraging the implicit and explicit semantics provided by manually assigned MeSH descriptors is an effective representation for capturing the underlying context of complex associations, along multiple thematic dimensions in LBD situations.


Assuntos
Análise por Conglomerados , Mineração de Dados/métodos , Descoberta do Conhecimento/métodos , Algoritmos , Bases de Dados Factuais , Humanos , Medical Subject Headings , Modelos Teóricos , Semântica
3.
Web Semant ; 29: 39-52, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25814917

RESUMO

While contemporary semantic search systems offer to improve classical keyword-based search, they are not always adequate for complex domain specific information needs. The domain of prescription drug abuse, for example, requires knowledge of both ontological concepts and "intelligible constructs" not typically modeled in ontologies. These intelligible constructs convey essential information that include notions of intensity, frequency, interval, dosage and sentiments, which could be important to the holistic needs of the information seeker. In this paper, we present a hybrid approach to domain specific information retrieval that integrates ontology-driven query interpretation with synonym-based query expansion and domain specific rules, to facilitate search in social media on prescription drug abuse. Our framework is based on a context-free grammar (CFG) that defines the query language of constructs interpretable by the search system. The grammar provides two levels of semantic interpretation: 1) a top-level CFG that facilitates retrieval of diverse textual patterns, which belong to broad templates and 2) a low-level CFG that enables interpretation of specific expressions belonging to such textual patterns. These low-level expressions occur as concepts from four different categories of data: 1) ontological concepts, 2) concepts in lexicons (such as emotions and sentiments), 3) concepts in lexicons with only partial ontology representation, called lexico-ontology concepts (such as side effects and routes of administration (ROA)), and 4) domain specific expressions (such as date, time, interval, frequency and dosage) derived solely through rules. Our approach is embodied in a novel Semantic Web platform called PREDOSE, which provides search support for complex domain specific information needs in prescription drug abuse epidemiology. When applied to a corpus of over 1 million drug abuse-related web forum posts, our search framework proved effective in retrieving relevant documents when compared with three existing search systems.

4.
J Biomed Inform ; 46(2): 238-51, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23026233

RESUMO

OBJECTIVES: This paper presents a methodology for recovering and decomposing Swanson's Raynaud Syndrome-Fish Oil hypothesis semi-automatically. The methodology leverages the semantics of assertions extracted from biomedical literature (called semantic predications) along with structured background knowledge and graph-based algorithms to semi-automatically capture the informative associations originally discovered manually by Swanson. Demonstrating that Swanson's manually intensive techniques can be undertaken semi-automatically, paves the way for fully automatic semantics-based hypothesis generation from scientific literature. METHODS: Semantic predications obtained from biomedical literature allow the construction of labeled directed graphs which contain various associations among concepts from the literature. By aggregating such associations into informative subgraphs, some of the relevant details originally articulated by Swanson have been uncovered. However, by leveraging background knowledge to bridge important knowledge gaps in the literature, a methodology for semi-automatically capturing the detailed associations originally explicated in natural language by Swanson, has been developed. RESULTS: Our methodology not only recovered the three associations commonly recognized as Swanson's hypothesis, but also decomposed them into an additional 16 detailed associations, formulated as chains of semantic predications. Altogether, 14 out of the 19 associations that can be attributed to Swanson were retrieved using our approach. To the best of our knowledge, such an in-depth recovery and decomposition of Swanson's hypothesis has never been attempted. CONCLUSION: In this work therefore, we presented a methodology to semi-automatically recover and decompose Swanson's RS-DFO hypothesis using semantic representations and graph algorithms. Our methodology provides new insights into potential prerequisites for semantics-driven Literature-Based Discovery (LBD). Based on our observations, three critical aspects of LBD include: (1) the need for more expressive representations beyond Swanson's ABC model; (2) an ability to accurately extract semantic information from text; and (3) the semantic integration of scientific literature and structured background knowledge.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Descoberta do Conhecimento/métodos , Modelos Teóricos , Semântica , Viscosidade Sanguínea , Biologia Computacional/tendências , Mineração de Dados/tendências , Humanos , Agregação Plaquetária , Doença de Raynaud
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1615-1618, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085755

RESUMO

While there has been recent progress in abstractive summarization as applied to different domains including news articles, scientific articles, and blog posts, the application of these techniques to clinical text summarization has been limited. This is primarily due to the lack of large-scale training data and the messy/unstructured nature of clinical notes as opposed to other domains where massive training data come in structured or semi -structured form. Further, one of the least explored and critical components of clinical text summarization is factual accuracy of clinical summaries. This is specifically crucial in the healthcare domain, cardiology in particular, where an accurate summary generation that preserves the facts in the source notes is critical to the well-being of a patient. In this study, we propose a framework for improving the factual accuracy of abstractive summarization of clinical text using knowledge-guided multi-objective optimization. We propose to jointly optimize three cost functions in our proposed architecture during training: generative loss, entity loss and knowledge loss and evaluate the proposed architecture on 1) clinical notes of patients with heart failure (HF), which we collect for this study; and 2) two benchmark datasets, Indiana University Chest X-ray collection (IU X-Ray), and MIMIC-CXR, that are publicly available. We experiment with three transformer encoder-decoder architectures and demonstrate that optimizing different loss functions leads to improved performance in terms of entity-level factual accuracy.


Assuntos
Cardiologia , Conhecimento , Benchmarking , Fontes de Energia Elétrica , Instalações de Saúde , Humanos
6.
JMIR Public Health Surveill ; 8(12): e24938, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563032

RESUMO

BACKGROUND: Web-based resources and social media platforms play an increasingly important role in health-related knowledge and experience sharing. There is a growing interest in the use of these novel data sources for epidemiological surveillance of substance use behaviors and trends. OBJECTIVE: The key aims were to describe the development and application of the drug abuse ontology (DAO) as a framework for analyzing web-based and social media data to inform public health and substance use research in the following areas: determining user knowledge, attitudes, and behaviors related to nonmedical use of buprenorphine and illicitly manufactured opioids through the analysis of web forum data Prescription Drug Abuse Online Surveillance; analyzing patterns and trends of cannabis product use in the context of evolving cannabis legalization policies in the United States through analysis of Twitter and web forum data (eDrugTrends); assessing trends in the availability of novel synthetic opioids through the analysis of cryptomarket data (eDarkTrends); and analyzing COVID-19 pandemic trends in social media data related to 13 states in the United States as per Mental Health America reports. METHODS: The domain and scope of the DAO were defined using competency questions from popular ontology methodology (101 ontology development). The 101 method includes determining the domain and scope of ontology, reusing existing knowledge, enumerating important terms in ontology, defining the classes, their properties and creating instances of the classes. The quality of the ontology was evaluated using a set of tools and best practices recognized by the semantic web community and the artificial intelligence community that engage in natural language processing. RESULTS: The current version of the DAO comprises 315 classes, 31 relationships, and 814 instances among the classes. The ontology is flexible and can easily accommodate new concepts. The integration of the ontology with machine learning algorithms dramatically decreased the false alarm rate by adding external knowledge to the machine learning process. The ontology is recurrently updated to capture evolving concepts in different contexts and applied to analyze data related to social media and dark web marketplaces. CONCLUSIONS: The DAO provides a powerful framework and a useful resource that can be expanded and adapted to a wide range of substance use and mental health domains to help advance big data analytics of web-based data for substance use epidemiology research.


Assuntos
COVID-19 , Mídias Sociais , Transtornos Relacionados ao Uso de Substâncias , Humanos , Estados Unidos/epidemiologia , Inteligência Artificial , Pandemias , COVID-19/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Analgésicos Opioides
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2643-2646, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085789

RESUMO

Heart failure occurs when the heart is not able to pump blood and oxygen to support other organs in the body as it should. Treatments include medications and sometimes hospitalization. Patients with heart failure can have both cardiovascular as well as non-cardiovascular comorbidities. Clinical notes of patients with heart failure can be analyzed to gain insight into the topics discussed in these notes and the major comorbidities in these patients. In this regard, we apply machine learning techniques, such as topic modeling, to identify the major themes found in the clinical notes specific to the procedures performed on 1,200 patients admitted for heart failure at the University of Illinois Hospital and Health Sciences System (UI Health). Topic modeling revealed five hidden themes in these clinical notes, including one related to heart disease comorbidities.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Coração , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Hospitalização , Hospitais , Humanos
8.
AMIA Jt Summits Transl Sci Proc ; 2021: 364-373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34457151

RESUMO

Suicide is the 10th leading cause of death in the US and the 2nd leading cause of death among teenagers. Clinical and psychosocial factors contribute to suicide risk (SRFs), although documentation and self-expression of such factors in EHRs and social networks vary. This study investigates the degree of variance across EHRs and social networks. We performed subjective analysis of SRFs, such as self-harm, bullying, impulsivity, family violence/discord, using >13.8 Million clinical notes on 123,703 patients with mental health conditions. We clustered clinical notes using semantic embeddings under a set of SRFs. Likewise, we clustered 2180 suicidal users on r/SuicideWatch (~30,000 posts) and performed comparative analysis. Top-3 SRFs documented in EHRs were depressive feelings (24.3%), psychological disorders (21.1%), drug abuse (18.2%). In r/SuicideWatch, gun-ownership (17.3%), self-harm (14.6%), bullying (13.2%) were Top-3 SRFs. Mentions of Family violence, racial discrimination, and other important SRFs contributing to suicide risk were missing from both platforms.


Assuntos
Mídias Sociais , Transtornos Relacionados ao Uso de Substâncias , Suicídio , Adolescente , Humanos , Fatores de Risco , Ideação Suicida
9.
PLoS One ; 16(3): e0248299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33764983

RESUMO

With the increasing legalization of medical and recreational use of cannabis, more research is needed to understand the association between depression and consumer behavior related to cannabis consumption. Big social media data has potential to provide deeper insights about these associations to public health analysts. In this interdisciplinary study, we demonstrate the value of incorporating domain-specific knowledge in the learning process to identify the relationships between cannabis use and depression. We develop an end-to-end knowledge infused deep learning framework (Gated-K-BERT) that leverages the pre-trained BERT language representation model and domain-specific declarative knowledge source (Drug Abuse Ontology) to jointly extract entities and their relationship using gated fusion sharing mechanism. Our model is further tailored to provide more focus to the entities mention in the sentence through entity-position aware attention layer, where ontology is used to locate the target entities position. Experimental results show that inclusion of the knowledge-aware attentive representation in association with BERT can extract the cannabis-depression relationship with better coverage in comparison to the state-of-the-art relation extractor.


Assuntos
Depressão/psicologia , Abuso de Maconha/psicologia , Processamento de Linguagem Natural , Conscientização , Humanos , Conhecimento , Idioma , Projetos de Pesquisa , Mídias Sociais
10.
PLoS One ; 16(5): e0250448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33999927

RESUMO

Suicide is the 10th leading cause of death in the U.S (1999-2019). However, predicting when someone will attempt suicide has been nearly impossible. In the modern world, many individuals suffering from mental illness seek emotional support and advice on well-known and easily-accessible social media platforms such as Reddit. While prior artificial intelligence research has demonstrated the ability to extract valuable information from social media on suicidal thoughts and behaviors, these efforts have not considered both severity and temporality of risk. The insights made possible by access to such data have enormous clinical potential-most dramatically envisioned as a trigger to employ timely and targeted interventions (i.e., voluntary and involuntary psychiatric hospitalization) to save lives. In this work, we address this knowledge gap by developing deep learning algorithms to assess suicide risk in terms of severity and temporality from Reddit data based on the Columbia Suicide Severity Rating Scale (C-SSRS). In particular, we employ two deep learning approaches: time-variant and time-invariant modeling, for user-level suicide risk assessment, and evaluate their performance against a clinician-adjudicated gold standard Reddit corpus annotated based on the C-SSRS. Our results suggest that the time-variant approach outperforms the time-invariant method in the assessment of suicide-related ideations and supportive behaviors (AUC:0.78), while the time-invariant model performed better in predicting suicide-related behaviors and suicide attempt (AUC:0.64). The proposed approach can be integrated with clinical diagnostic interviews for improving suicide risk assessments.


Assuntos
Escalas de Graduação Psiquiátrica , Mídias Sociais , Suicídio/psicologia , Área Sob a Curva , Bases de Dados Factuais , Aprendizado Profundo , Humanos , Curva ROC , Medição de Risco , Ideação Suicida , Tentativa de Suicídio/estatística & dados numéricos , Prevenção do Suicídio
11.
JMIR Ment Health ; 8(5): e20865, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33970116

RESUMO

BACKGROUND: In clinical diagnostic interviews, mental health professionals (MHPs) implement a care practice that involves asking open questions (eg, "What do you want from your life?" "What have you tried before to bring change in your life?") while listening empathetically to patients. During these interviews, MHPs attempted to build a trusting human-centered relationship while collecting data necessary for professional medical and psychiatric care. Often, because of the social stigma of mental health disorders, patient discomfort in discussing their presenting problem may add additional complexities and nuances to the language they use, that is, hidden signals among noisy content. Therefore, a focused, well-formed, and elaborative summary of clinical interviews is critical to MHPs in making informed decisions by enabling a more profound exploration of a patient's behavior, especially when it endangers life. OBJECTIVE: The aim of this study is to propose an unsupervised, knowledge-infused abstractive summarization (KiAS) approach that generates summaries to enable MHPs to perform a well-informed follow-up with patients to improve the existing summarization methods built on frequency heuristics by creating more informative summaries. METHODS: Our approach incorporated domain knowledge from the Patient Health Questionnaire-9 lexicon into an integer linear programming framework that optimizes linguistic quality and informativeness. We used 3 baseline approaches: extractive summarization using the SumBasic algorithm, abstractive summarization using integer linear programming without the infusion of knowledge, and abstraction over extractive summarization to evaluate the performance of KiAS. The capability of KiAS on the Distress Analysis Interview Corpus-Wizard of Oz data set was demonstrated through interpretable qualitative and quantitative evaluations. RESULTS: KiAS generates summaries (7 sentences on average) that capture informative questions and responses exchanged during long (58 sentences on average), ambiguous, and sparse clinical diagnostic interviews. The summaries generated using KiAS improved upon the 3 baselines by 23.3%, 4.4%, 2.5%, and 2.2% for thematic overlap, Flesch Reading Ease, contextual similarity, and Jensen Shannon divergence, respectively. On the Recall-Oriented Understudy for Gisting Evaluation-2 and Recall-Oriented Understudy for Gisting Evaluation-L metrics, KiAS showed an improvement of 61% and 49%, respectively. We validated the quality of the generated summaries through visual inspection and substantial interrater agreement from MHPs. CONCLUSIONS: Our collaborator MHPs observed the potential utility and significant impact of KiAS in leveraging valuable but voluminous communications that take place outside of normally scheduled clinical appointments. This study shows promise in generating semantically relevant summaries that will help MHPs make informed decisions about patient status.

12.
ArXiv ; 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33235895

RESUMO

COVID-19 pandemic has adversely and disproportionately impacted people suffering from mental health issues and substance use problems. This has been exacerbated by social isolation during the pandemic and the social stigma associated with mental health and substance use disorders, making people reluctant to share their struggles and seek help. Due to the anonymity and privacy they provide, social media emerged as a convenient medium for people to share their experiences about their day to day struggles. Reddit is a well-recognized social media platform that provides focused and structured forums called subreddits, that users subscribe to and discuss their experiences with others. Temporal assessment of the topical correlation between social media postings about mental health/substance use and postings about Coronavirus is crucial to better understand public sentiment on the pandemic and its evolving impact, especially related to vulnerable populations. In this study, we conduct a longitudinal topical analysis of postings between subreddits r/depression, r/Anxiety, r/SuicideWatch, and r/Coronavirus, and postings between subreddits r/opiates, r/OpiatesRecovery, r/addiction, and r/Coronavirus from January 2020 - October 2020. Our results show a high topical correlation between postings in r/depression and r/Coronavirus in September 2020. Further, the topical correlation between postings on substance use disorders and Coronavirus fluctuates, showing the highest correlation in August 2020. By monitoring these trends from platforms such as Reddit, epidemiologists, and mental health professionals can gain insights into the challenges faced by communities for targeted interventions.

13.
PLoS One ; 15(3): e0227330, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218569

RESUMO

THIS ARTICLE USES WORDS OR LANGUAGE THAT IS CONSIDERED PROFANE, VULGAR, OR OFFENSIVE BY SOME READERS. The presence of a significant amount of harassment in user-generated content and its negative impact calls for robust automatic detection approaches. This requires the identification of different types of harassment. Earlier work has classified harassing language in terms of hurtfulness, abusiveness, sentiment, and profanity. However, to identify and understand harassment more accurately, it is essential to determine the contextual type that captures the interrelated conditions in which harassing language occurs. In this paper we introduce the notion of contextual type in harassment by distinguishing between five contextual types: (i) sexual, (ii) racial, (iii) appearance-related, (iv) intellectual and (v) political. We utilize an annotated corpus from Twitter distinguishing these types of harassment. We study the context of each kind to shed light on the linguistic meaning, interpretation, and distribution, with results from two lines of investigation: an extensive linguistic analysis, and the statistical distribution of uni-grams. We then build type- aware classifiers to automate the identification of type-specific harassment. Our experiments demonstrate that these classifiers provide competitive accuracy for identifying and analyzing harassment on social media. We present extensive discussion and significant observations about the effectiveness of type-aware classifiers using a detailed comparison setup, providing insight into the role of type-dependent features.


Assuntos
Coleta de Dados/métodos , Assédio não Sexual/estatística & dados numéricos , Linguística/métodos , Aprendizado de Máquina , Assédio Sexual/estatística & dados numéricos , Coleta de Dados/estatística & dados numéricos , Feminino , Assédio não Sexual/prevenção & controle , Humanos , Idioma , Masculino , Assédio Sexual/prevenção & controle , Mídias Sociais/estatística & dados numéricos
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5838-5841, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019301

RESUMO

Sickle Cell Disease (SCD) is a hereditary disorder of red blood cells in humans. Complications such as pain, stroke, and organ failure occur in SCD as malformed, sickled red blood cells passing through small blood vessels get trapped. Particularly, acute pain is known to be the primary symptom of SCD. The insidious and subjective nature of SCD pain leads to challenges in pain assessment among Medical Practitioners (MPs). Thus, accurate identification of markers of pain in patients with SCD is crucial for pain management. Classifying clinical notes of patients with SCD based on their pain level enables MPs to give appropriate treatment. We propose a binary classification model to predict pain relevance of clinical notes and a multiclass classification model to predict pain level. While our four binary machine learning (ML) classifiers are comparable in their performance, Decision Trees had the best performance for the multiclass classification task achieving 0.70 in F-measure. Our results show the potential clinical text analysis and machine learning offer to pain management in sickle cell patients.


Assuntos
Dor Aguda , Anemia Falciforme , Dor Aguda/diagnóstico , Anemia Falciforme/complicações , Contagem de Eritrócitos , Humanos , Manejo da Dor , Medição da Dor
15.
PLoS One ; 15(4): e0226248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32275658

RESUMO

Depression is a major public health concern in the U.S. and globally. While successful early identification and treatment can lead to many positive health and behavioral outcomes, depression, remains undiagnosed, untreated or undertreated due to several reasons, including denial of the illness as well as cultural and social stigma. With the ubiquity of social media platforms, millions of people are now sharing their online persona by expressing their thoughts, moods, emotions, and even their daily struggles with mental health on social media. Unlike traditional observational cohort studies conducted through questionnaires and self-reported surveys, we explore the reliable detection of depressive symptoms from tweets obtained, unobtrusively. Particularly, we examine and exploit multimodal big (social) data to discern depressive behaviors using a wide variety of features including individual-level demographics. By developing a multimodal framework and employing statistical techniques to fuse heterogeneous sets of features obtained through the processing of visual, textual, and user interaction data, we significantly enhance the current state-of-the-art approaches for identifying depressed individuals on Twitter (improving the average F1-Score by 5 percent) as well as facilitate demographic inferences from social media. Besides providing insights into the relationship between demographics and mental health, our research assists in the design of a new breed of demographic-aware health interventions.


Assuntos
Depressão/diagnóstico , Saúde Mental , Mídias Sociais , Adolescente , Adulto , Fatores Etários , Depressão/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Adulto Jovem
16.
JMIR Pediatr Parent ; 2(1): e14300, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31518318

RESUMO

BACKGROUND: Asthma is a chronic pulmonary disease with multiple triggers. It can be managed by strict adherence to an asthma care plan and by avoiding these triggers. Clinicians cannot continuously monitor their patients' environment and their adherence to an asthma care plan, which poses a significant challenge for asthma management. OBJECTIVE: In this study, pediatric patients were continuously monitored using low-cost sensors to collect asthma-relevant information. The objective of this study was to assess whether kHealth kit, which contains low-cost sensors, can identify personalized triggers and provide actionable insights to clinicians for the development of a tailored asthma care plan. METHODS: The kHealth asthma kit was developed to continuously track the symptoms of asthma in pediatric patients and monitor the patients' environment and adherence to their care plan for either 1 or 3 months. The kit consists of an Android app-based questionnaire to collect information on asthma symptoms and medication intake, Fitbit to track sleep and activity, the Peak Flow meter to monitor lung functions, and Foobot to monitor indoor air quality. The data on the patient's outdoor environment were collected using third-party Web services based on the patient's zip code. To date, 107 patients consented to participate in the study and were recruited from the Dayton Children's Hospital, of which 83 patients completed the study as instructed. RESULTS: Patient-generated health data from the 83 patients who completed the study were included in the cohort-level analysis. Of the 19% (16/83) of patients deployed in spring, the symptoms of 63% (10/16) and 19% (3/16) of patients suggested pollen and particulate matter (PM2.5), respectively, to be their major asthma triggers. Of the 17% (14/83) of patients deployed in fall, symptoms of 29% (4/17) and 21% (3/17) of patients suggested pollen and PM2.5, respectively, to be their major triggers. Among the 28% (23/83) of patients deployed in winter, PM2.5 was identified as the major trigger for 83% (19/23) of patients. Similar correlations were not observed between asthma symptoms and factors such as ozone level, temperature, and humidity. Furthermore, 1 patient from each season was chosen to explain, in detail, his or her personalized triggers by observing temporal associations between triggers and asthma symptoms gathered using the kHealth asthma kit. CONCLUSIONS: The continuous monitoring of pediatric asthma patients using the kHealth asthma kit generates insights on the relationship between their asthma symptoms and triggers across different seasons. This can ultimately inform personalized asthma management and intervention plans.

17.
JMIR Pediatr Parent ; 1(2): e11988, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31008446

RESUMO

Background: In the traditional asthma management protocol, a child meets with a clinician infrequently, once in 3 to 6 months, and is assessed using the Asthma Control Test questionnaire. This information is inadequate for timely determination of asthma control, compliance, precise diagnosis of the cause, and assessing the effectiveness of the treatment plan. The continuous monitoring and improved tracking of the child's symptoms, activities, sleep, and treatment adherence can allow precise determination of asthma triggers and a reliable assessment of medication compliance and effectiveness. Digital phenotyping refers to moment-by-moment quantification of the individual-level human phenotype in situ using data from personal digital devices, in particular, mobile phones. The kHealth kit consists of a mobile app, provided on an Android tablet, that asks timely and contextually relevant questions related to asthma symptoms, medication intake, reduced activity because of symptoms, and nighttime awakenings; a Fitbit to monitor activity and sleep; a Microlife Peak Flow Meter to monitor the peak expiratory flow and forced exhaled volume in 1 second; and a Foobot to monitor indoor air quality. The kHealth cloud stores personal health data and environmental data collected using Web services. The kHealth Dashboard interactively visualizes the collected data. Objective: The objective of this study was to discuss the usability and feasibility of collecting clinically relevant data to help clinicians diagnose or intervene in a child's care plan by using the kHealth system for continuous and comprehensive monitoring of child's symptoms, activity, sleep pattern, environmental triggers, and compliance. The kHealth system helps in deriving actionable insights to help manage asthma at both the personal and cohort levels. The Digital Phenotype Score and Controller Compliance Score introduced in the study are the basis of ongoing work on addressing personalized asthma care and answer questions such as, "How can I help my child better adhere to care instructions and reduce future exacerbation?" Methods: The Digital Phenotype Score and Controller Compliance Score summarize the child's condition from the data collected using the kHealth kit to provide actionable insights. The Digital Phenotype Score formalizes the asthma control level using data about symptoms, rescue medication usage, activity level, and sleep pattern. The Compliance Score captures how well the child is complying with the treatment protocol. We monitored and analyzed data for 95 children, each recruited for a 1- or 3-month-long study. The Asthma Control Test scores obtained from the medical records of 57 children were used to validate the asthma control levels calculated using the Digital Phenotype Scores. Results: At the cohort level, we found asthma was very poorly controlled in 37% (30/82) of the children, not well controlled in 26% (21/82), and well controlled in 38% (31/82). Among the very poorly controlled children (n=30), we found 30% (9/30) were highly compliant toward their controller medication intake-suggesting a re-evaluation for change in medication or dosage-whereas 50% (15/30) were poorly compliant and candidates for a more timely intervention to improve compliance to mitigate their situation. We observed a negative Kendall Tau correlation between Asthma Control Test scores and Digital Phenotype Score as -0.509 (P<.01). Conclusions: kHealth kit is suitable for the collection of clinically relevant information from pediatric patients. Furthermore, Digital Phenotype Score and Controller Compliance Score, computed based on the continuous digital monitoring, provide the clinician with timely and detailed evidence of a child's asthma-related condition when compared with the Asthma Control Test scores taken infrequently during clinic visits.

18.
CEUR Workshop Proc ; 23172018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34690624

RESUMO

Our current health applications do not adequately take into account contextual and personalized knowledge about patients. In order to design "Personalized Coach for Healthcare" applications to manage chronic diseases, there is a need to create a Personalized Healthcare Knowledge Graph (PHKG) that takes into consideration a patient's health condition (personalized knowledge) and enriches that with contextualized knowledge from environmental sensors and Web of Data (e.g., symptoms and treatments for diseases). To develop PHKG, aggregating knowledge from various heterogeneous sources such as the Internet of Things (IoT) devices, clinical notes, and Electronic Medical Records (EMRs) is necessary. In this paper, we explain the challenges of collecting, managing, analyzing, and integrating patients' health data from various sources in order to synthesize and deduce meaningful information embodying the vision of the Data, Information, Knowledge, and Wisdom (DIKW) pyramid. Furthermore, we sketch a solution that combines: 1) IoT data analytics, and 2) explicit knowledge and illustrate it using three chronic disease use cases - asthma, obesity, and Parkinson's.

19.
RTSI ; 20172017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29399675

RESUMO

Healthcare as we know it is in the process of going through a massive change - from episodic to continuous, from disease focused to wellness and quality of life focused, from clinic centric to anywhere a patient is, from clinician controlled to patient empowered, and from being driven by limited data to 360-degree, multimodal personal-public-population physical-cyber-social big data driven. While ability to create and capture data is already here, the upcoming innovations will be in converting this big data into smart data through contextual and personalized processing such that patients and clinicians can make better decisions and take timely actions for augmented personalized health. This paper outlines current opportunities and challenges, with a focus on key AI approaches to make this a reality. The broader vision is exemplified using three ongoing applications (asthma in children, bariatric surgery, and pain management) as part of the Kno.e.sis kHealth personalized digital health initiative.

20.
Artigo em Inglês | MEDLINE | ID: mdl-29962511

RESUMO

Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully. In this paper, we discuss the indispensable role of knowledge for deeper understanding of content where (i) large amounts of training data are unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly subjective content), and (iii) applications need to use complementary or related data in multiple modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper understanding and exploitation of multimodal data and continued incorporation of knowledge in learning techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA