Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol ; 31(12): 1955-1963, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26434561

RESUMO

PURPOSE: Present study was undertaken to evaluate the antiamnesic effect of Sesamum indicum (S. indicum) seeds (standardized for sesamin, a lignan, content) in scopolamine, a muscarinic antagonist intoxicated mice. METHODS: Male Swiss albino mice (18-22 g bw) were pretreated with methanolic extract of sesame seeds (MSSE) (100 and 200 mg/kg/day, p.o) for a period of 14 days. Scopolamine (0.3 mg/kg, i.p.) was injected on day 14, 45 ± 10 min after MSSE administration. Antiamnesic effect of MSSE was evaluated using step-down latency (SDL) on passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. To unravel the mechanism of action, we examined the effects of MSSE on the genes such as acetyl cholinesterase (AChE), muscarinic receptor M1 subtype (mAChRM1 ), and brain derived neurotrophic factor (BDNF) expression within hippocampus of experimental mice. Further, its effects on bax and bcl-2 were also evaluated. Histopathological examination of hippocampal CA1 region was performed using cresyl violet staining. RESULTS: MSSE treatment produced a significant and dose dependent increase in step down latency in passive avoidance test and decrease in transfer latency in elevated plus maze in scopolamine intoxicated injected mice. MSSE down-regulated AChE and mAChRM1 and up-regulated BDNF mRNA expression. Further, it significantly down-regulated the bax and caspase 3 and up-regulated bcl-2 expression in scopolamine intoxicated mice brains. Mice treated with MSSE showed increased neuronal counts in hippocampal CA1 region when compared with scopolamine-vehicle treated mice. CONCLUSION: Sesame seeds have the ability to interact with cholinergic components involved in memory function/restoration and also an interesting candidate to be considered for future cognitive research. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1955-1963, 2016.


Assuntos
Suplementos Nutricionais , Memória/efeitos dos fármacos , Antagonistas Muscarínicos/toxicidade , Extratos Vegetais/farmacologia , Escopolamina/toxicidade , Sesamum/química , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Sementes/química
2.
Clin Exp Hypertens ; 35(7): 534-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23402543

RESUMO

Cuminum cyminum (CC) is a commonly used spice in South Indian foods. It has been traditionally used for the treatment and management of sleep disorders, indigestion, and hypertension. The present study was carried out to scientifically evaluate the anti-hypertensive potential of standardized aqueous extract of CC seeds and its role in arterial endothelial nitric oxide synthase expression, inflammation, and oxidative stress in renal hypertensive rats. Renal hypertension was induced by the two-kidney one-clip (2K/1C) method in rats. Systolic blood pressure (SBP), plasma nitrate/nitrite, carotid-eNOS, renal-TNF-α, IL-6, Bax, Bcl-2, thioredoxin 1 (TRX1), and thioredoxin reductase 1 (TRXR1) mRNA expressions were studied to demonstrate the anti-hypertensive action of CC. Cuminum cyminum was administered orally (200 mg/kg b.wt) for a period of 9 weeks; it improved plasma nitric oxide and decreased the systolic blood pressure in hypertensive rats. It also up-regulated the gene expression of eNOS, Bcl-2, TRX1, and TRXR1; and down-regulated Bax, TNF-α, and IL-6. These data reveal that CC seeds augment endothelial functions and ameliorate inflammatory and oxidative stress in hypertensive rats. The present report is the first of its kind to demonstrate the mechanism of anti-hypertensive action of CC seeds in an animal model of renovascular hypertension.


Assuntos
Cuminum , Hipertensão Renovascular/tratamento farmacológico , Hipertensão Renovascular/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/sangue , Fitoterapia , Especiarias , Animais , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Artéria Carótida Primitiva/patologia , Genes bcl-2/efeitos dos fármacos , Hipertensão Renovascular/patologia , Interleucina-6/genética , Rim/patologia , Masculino , Óxido Nítrico Sintase Tipo III/genética , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA