Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 30(19): 4926-4938, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34314543

RESUMO

Climate change is causing upward shift of forest lines worldwide, with consequences for soil biota and carbon (C) sequestration. We here analyse compositional changes in the soil biota across the forest line ecotone, an important transition zone between different ecosystems. We collected soil samples along transects stretching from subalpine mountain birch forests to alpine heath. Soil fungi and micro-eukaryotes were surveyed using DNA metabarcoding of the ITS2 and 18S markers, while ergosterol was used to quantify fungal biomass. We observed a strong shift in the soil biota across the forest line ecotone: Below the forest line, there were higher proportions of basidiomycetes and mucoromycetes, including ectomycorrhizal and saprotrophic fungi. Above it, we observed relatively more root-associated ascomycetes, including Archaeorhizomycetes, ericoid mycorrhizal fungi and dark septate endophytes. Ergosterol and percentage C content in soil correlated strongly and positively with the abundance of root-associated ascomycetes. The predominance of ectomycorrhizal and saprotrophic fungi below the forest line probably promote high C turnover, while root-associated ascomycetes above the forest line may enhance C sequestration. With further rise in forest lines, there will be a corresponding shift in the below-ground biota, probably leading to enhanced release of soil C.


Assuntos
Micobioma , Micorrizas , Ecossistema , Florestas , Fungos/genética , Micobioma/genética , Micorrizas/genética , Solo , Microbiologia do Solo
2.
New Phytol ; 227(2): 601-612, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32171021

RESUMO

The root-associated habit has evolved on numerous occasions in different fungal lineages, suggesting a strong evolutionary pressure for saprotrophic fungi to switch to symbiotic associations with plants. Species within the ubiquitous, saprotrophic genus Mycena are frequently major components in molecular studies of root-associated fungal communities, suggesting that an evaluation of their trophic status is warranted. Here, we report on interactions between a range of Mycena species and the plant Betula pendula. In all, 17 Mycena species were inoculated onto B. pendula seedlings. Physical interactions between hyphae and fine roots were examined using differential staining and fluorescence microscopy. Physiological interactions were investigated using 14 C and 32 P to show potential transfer between symbionts. All Mycena species associated closely with fine roots, showing hyphal penetration into the roots, which in some cases were intracellular. Seven species formed mantle-like structures around root tips, but none formed a Hartig net. Mycena pura and Mycena galopus both enhanced seedling growth, with M. pura showing significant transfer of 32 P to the seedlings. Our results support the view that several Mycena species can associate closely with plant roots and some may potentially occupy a transitional state between saprotrophy and biotrophy.


Assuntos
Agaricales , Micorrizas , Raízes de Plantas , Plântula , Simbiose
3.
Mycorrhiza ; 29(3): 167-180, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30929039

RESUMO

Although only a relatively small proportion of plant species form ectomycorrhizae with fungi, it is crucial for growth and survival for a number of widespread woody plant species. Few studies have attempted to investigate the fine scale spatial structure of entire root systems of adult ectomycorrhizal (EcM) plants. Here, we use the herbaceous perennial Bistorta vivipara to map the entire root system of an adult EcM plant and investigate the spatial structure of its root-associated fungi. All EcM root tips were sampled, mapped and identified using a direct PCR approach and Sanger sequencing of the internal transcribed spacer region. A total of 32.1% of all sampled root tips (739 of 2302) were successfully sequenced and clustered into 41 operational taxonomic units (OTUs). We observed a clear spatial structuring of the root-associated fungi within the root system. Clusters of individual OTUs were observed in the younger parts of the root system, consistent with observations of priority effects in previous studies, but were absent from the older parts of the root system. This may suggest a succession and fragmentation of the root-associated fungi even at a very fine scale, where competition likely comes into play at different successional stages within the root system.


Assuntos
Variação Genética , Micobioma , Micorrizas/classificação , Raízes de Plantas/microbiologia , Polygonum/microbiologia , Biologia Computacional , DNA Fúngico/genética , DNA Espaçador Ribossômico , Micorrizas/isolamento & purificação , Microbiologia do Solo
4.
Cell Genom ; : 100586, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38942024

RESUMO

Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA