Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Virol ; 95(18): e0065721, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34160252

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes severe clinical disease in immunosuppressed patients and congenitally infected newborn infants. Viral envelope glycoproteins represent attractive targets for vaccination or passive immunotherapy. To extend the knowledge of mechanisms of virus neutralization, monoclonal antibodies (MAbs) were generated following immunization of mice with HCMV virions. Hybridoma supernatants were screened for in vitro neutralization activity, yielding three potent MAbs, 6E3, 3C11, and 2B10. MAbs 6E3 and 3C11 blocked infection of all viral strains that were tested, while MAb 2B10 neutralized only 50% of the HCMV strains analyzed. Characterization of the MAbs using indirect immunofluorescence analyses demonstrated their reactivity with recombinantly derived gH. While MAbs 6E3 and 3C11 reacted with gH when expressed alone, 2B10 detected gH only when it was coexpressed with gB and gL. Recognition of gH by 3C11 was dependent on the expression of the entire ectodomain of gH, whereas 6E3 required residues 1 to 629 of gH. The strain-specific determinant for neutralization by Mab 2B10 was identified as a single Met→Ile amino acid polymorphism within gH, located within the central part of the protein. The polymorphism is evenly distributed among described HCMV strains. The 2B10 epitope thus represents a novel strain-specific antibody target site on gH of HCMV. The dependence of the reactivity of 2B10 on the simultaneous presence of gB/gH/gL will be of value in the structural definition of this tripartite complex. The 2B10 epitope may also represent a valuable tool for diagnostics to monitor infections/reinfections with different HCMV strains during pregnancy or after transplantation. IMPORTANCE HCMV infections are life threatening to people with compromised or immature immune systems. Understanding the antiviral antibody repertoire induced during HCMV infection is a necessary prerequisite to define protective antibody responses. Here, we report three novel anti-gH MAbs that potently neutralized HCMV infectivity. One of these MAbs (2B10) targets a novel strain-specific conformational epitope on gH that only becomes accessible upon coexpression of the minimal fusion machinery gB/gH/gL. Strain specificity is dependent on a single amino acid polymorphism within gH. Our data highlight the importance of strain-specific neutralizing antibody responses against HCMV. The 2B10 epitope may also represent a valuable tool for diagnostics to monitor infections/reinfections with different HCMV strains during pregnancy or after transplantation. In addition, the dependence of the reactivity of 2B10 on the simultaneous presence of gB/gH/gL will be of value in the structural definition of this tripartite complex.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Epitopos/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Citomegalovirus/classificação , Infecções por Citomegalovirus/virologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C
2.
Artigo em Inglês | MEDLINE | ID: mdl-33495228

RESUMO

Herpesviruses are widespread and can cause serious illness. Many currently available antiviral drugs have limited effects, result in rapid development of resistance, and often exhibit dose-dependent toxicity. Especially for human cytomegalovirus (HCMV), new well-tolerated compounds with novel mechanisms of action are urgently needed. In this study, we characterized the antiviral activity of two new diazadispiroalkane derivatives, 11826091 and 11826236. These two small molecules exhibited strong activity against low-passage-number HCMV. Pretreatment of cell-free virus with these compounds greatly reduced infection. Time-of-addition assays where 11826091 or 11826236 was added to cells before infection, before and during infection, or during or after infection demonstrated an inhibitory effect on early steps of infection. Interestingly, 11826236 had an effect by addition to cells after infection. Results from entry assays showed the major effect to be on attachment. Only 11826236 had a minimal effect on penetration comparable to heparin. Further, no effect on virus infection was found for cell lines with a defect in heparan sulfate expression or lacking all surface glycosaminoglycans, indicating that these small molecules bind to heparan sulfate on the cell surface. To test this further, we extended our analyses to pseudorabies virus (PrV), a member of the Alphaherpesvirinae, which is known to use cell surface heparan sulfate for initial attachment via nonessential glycoprotein C (gC). While infection with PrV wild type was strongly impaired by 11826091 or 11826236, as with heparin, a mutant lacking gC was unaffected by either treatment, demonstrating that primary attachment to heparan sulfate via gC is targeted by these small molecules.


Assuntos
Herpesvirus Suídeo 1 , Internalização do Vírus , Alcanos , Animais , Antivirais , Glicosaminoglicanos , Heparina/farmacologia , Heparitina Sulfato , Humanos , Compostos de Espiro , Proteínas do Envelope Viral
3.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32641474

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause severe clinical disease in allograft recipients and infants infected in utero Virus-neutralizing antibodies defined in vitro have been proposed to confer protection against HCMV infection, and the virion envelope glycoprotein B (gB) serves as a major target of neutralizing antibodies. The viral fusion protein gB is nonfusogenic on its own and requires glycoproteins H (gH) and L (gL) for membrane fusion, which is in contrast to requirements of related class III fusion proteins, including vesicular stomatitis virus glycoprotein G (VSV-G) or baculovirus gp64. To explore requirements for gB's fusion activity, we generated a set of chimeras composed of gB and VSV-G or gp64, respectively. These gB chimeras were intrinsically fusion active and led to the formation of multinucleated cell syncytia when expressed in the absence of other viral proteins. Utilizing a panel of virus-neutralizing gB-specific monoclonal antibodies (MAbs), we could demonstrate that syncytium formation of the fusogenic gB/VSV-G chimera can be significantly inhibited by only a subset of neutralizing MAbs which target antigenic domain 5 (AD-5) of gB. This observation argues for differential modes of action of neutralizing anti-gB MAbs and suggests that blocking the membrane fusion function of gB could be one mechanism of antibody-mediated virus neutralization. In addition, our data have important implications for the further understanding of the conformation of gB that promotes membrane fusion as well as the identification of structures in AD-5 that could be targeted by antibodies to block this early step in HCMV infection.IMPORTANCE HCMV is a major global health concern, and antiviral chemotherapy remains problematic due to toxicity of available compounds and the emergence of drug-resistant viruses. Thus, an HCMV vaccine represents a priority for both governmental and pharmaceutical research programs. A major obstacle for the development of a vaccine is a lack of knowledge of the nature and specificities of protective immune responses that should be induced by such a vaccine. Glycoprotein B of HCMV is an important target for neutralizing antibodies and, hence, is often included as a component of intervention strategies. By generation of fusion-active gB chimeras, we were able to identify target structures of neutralizing antibodies that potently block gB-induced membrane fusion. This experimental system provides an approach to screen for antibodies that interfere with gB's fusogenic activity. In summary, our data will likely contribute to both rational vaccine design and the development of antibody-based therapies against HCMV.


Assuntos
Anticorpos Neutralizantes/farmacologia , Citomegalovirus/genética , Proteínas Mutantes Quiméricas/genética , Proteínas do Envelope Viral/genética , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Anticorpos Antivirais/farmacologia , Sítios de Ligação , Fusão Celular , Linhagem Celular , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/virologia , Expressão Gênica , Células Gigantes/efeitos dos fármacos , Células Gigantes/metabolismo , Células Gigantes/ultraestrutura , Células Gigantes/virologia , Células HEK293 , Humanos , Camundongos , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/metabolismo , Cultura Primária de Células , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/virologia , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas do Envelope Viral/metabolismo
4.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31969433

RESUMO

Human cytomegalovirus (HCMV) encodes the viral mRNA export factor pUL69, which facilitates the cytoplasmic accumulation of mRNA via interaction with the cellular RNA helicase UAP56 or URH49. We reported previously that pUL69 is phosphorylated by cellular CDKs and the viral CDK-like kinase pUL97. Here, we set out to identify phosphorylation sites within pUL69 and to characterize their importance. Mass spectrometry-based phosphosite mapping of pUL69 identified 10 serine/threonine residues as phosphoacceptors. Surprisingly, only a few of these sites localized to the N terminus of pUL69, which could be due to the presence of additional posttranslational modifications, like arginine methylation. As an alternative approach, pUL69 mutants with substitutions of putative phosphosites were analyzed by Phos-tag SDS-PAGE. This demonstrated that serines S46 and S49 serve as targets for phosphorylation by pUL97. Furthermore, we provide evidence that phosphorylation of these serines mediates cis/trans isomerization by the prolyl isomerase Pin1, thus forming a functional Pin1 binding motif. Surprisingly, while abrogation of the Pin1 motif did not affect the replication of recombinant cytomegaloviruses, mutation of serines next to the interaction site for UAP56/URH49 strongly decreased viral replication. This was correlated with a loss of UAP56/URH49 recruitment. Intriguingly, the critical serines S13 and S15 were located within a sequence resembling the UAP56 binding motif (UBM) of cellular mRNA adaptor proteins like REF and UIF. We propose that betaherpesviral mRNA export factors have evolved an extended UAP56/URH49 recognition sequence harboring phosphorylation sites to increase their binding affinities. This may serve as a strategy to successfully compete with cellular mRNA adaptor proteins for binding to UAP56/URH49.IMPORTANCE The multifunctional regulatory protein pUL69 of human cytomegalovirus acts as a viral RNA export factor with a critical role in efficient replication. Here, we identify serine/threonine phosphorylation sites for cellular and viral kinases within pUL69. We demonstrate that the pUL97/CDK phosphosites within alpha-helix 2 of pUL69 are crucial for its cis/trans isomerization by the cellular protein Pin1. Thus, we identified pUL69 as the first HCMV-encoded protein that is phosphorylated by cellular and viral serine/threonine kinases in order to serve as a substrate for Pin1. Furthermore, our study revealed that betaherpesviral mRNA export proteins contain extended binding motifs for the cellular mRNA adaptor proteins UAP56/URH49 harboring phosphorylated serines that are critical for efficient viral replication. Knowledge of the phosphorylation sites of pUL69 and the processes regulated by these posttranslational modifications is important in order to develop antiviral strategies based on a specific interference with pUL69 phosphorylation.


Assuntos
Citomegalovirus/genética , RNA Helicases DEAD-box/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , RNA Viral/genética , Serina/metabolismo , Células HEK293 , Humanos , Mutação , Fosforilação , RNA Mensageiro/genética , Treonina/metabolismo , Fatores de Transcrição/metabolismo , Replicação Viral
5.
J Gen Virol ; 97(1): 144-151, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26555090

RESUMO

Cyclin-dependent kinases (CDKs) are multifaceted regulators involved in the replication of human cytomegalovirus. Recently, we demonstrated an interaction of CDK9-cyclin T1 as well as viral CDK orthologue pUL97 with the viral regulator pUL69, thereby leading to pUL69-activating phosphorylation. Here, we demonstrate that colocalization and direct pUL69-cyclin T1 interaction is independent of viral strains and host cell types. In vitro phosphorylation of pUL69 by CDK9 or pUL97 did not occur in a single site-specific manner, but at multiple sites. The previously described fine-speckled nuclear aggregation of pUL69 was assigned to the late phase of viral replication. CDK inhibitors, including a novel inhibitor of the CDK-activating kinase CDK7, massively intensified this fine-speckled accumulation. Interestingly, we also observed spontaneous pUL69 accumulation in the absence of inhibitors at a lower frequency. These findings provide new insight into pUL69 kinase interregulation and emphasize the importance of pUL69 phosphorylation for correct intranuclear localization.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Citomegalovirus/fisiologia , Interações Hospedeiro-Patógeno , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Processamento de Proteína Pós-Traducional , Transativadores/metabolismo , Humanos , Fosforilação , Transporte Proteico
6.
J Virol ; 89(18): 9601-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26178996

RESUMO

UNLABELLED: The regulatory protein pUL69 of human cytomegalovirus acts as a viral mRNA export factor, facilitating the cytoplasmic accumulation of unspliced RNA via interaction with the cellular mRNA export factor UAP56. Here we provide evidence for a posttranslational modification of pUL69 via arginine methylation within the functionally important N terminus. First, we demonstrated a specific immunoprecipitation of full-length pUL69 as well as pUL69aa1-146 by a mono/dimethylarginine-specific antibody. Second, we observed a specific electrophoretic mobility shift upon overexpression of the catalytically active protein arginine methyltransferase 6 (PRMT6). Third, a direct interaction of pUL69 and PRMT6 was confirmed by yeast two-hybrid and coimmunoprecipitation analyses. We mapped the PRMT6 interaction motif to the pUL69 N terminus and identified critical amino acids within the arginine-rich R1 box of pUL69 that were crucial for PRMT6 and/or UAP56 recruitment. In order to test the impact of putative methylation substrates on the functions of pUL69, we constructed various pUL69 derivatives harboring arginine-to-alanine substitutions and tested them for RNA export activity. Thus, we were able to discriminate between arginines within the R1 box of pUL69 that were crucial for UAP56/PRMT6-interaction and/or mRNA export activity. Remarkably, nuclear magnetic resonance (NMR) analyses revealed the same α-helical structures for pUL69 sequences encoding either the wild type R1/R2 boxes or a UAP56/PRMT6 binding-deficient derivative, thereby excluding the possibility that R/A amino acid substitutions within R1 affected the secondary structure of pUL69. We therefore conclude that the pUL69 N terminus is methylated by PRMT6 and that this critically affects the functions of pUL69 for efficient mRNA export and replication of human cytomegalovirus. IMPORTANCE: The UL69 protein of human cytomegalovirus is a multifunctional regulatory protein that acts as a viral RNA export factor with a critical role for efficient replication. Here, we demonstrate that pUL69 is posttranslationally modified via arginine methylation and that the protein methyltransferase PRMT6 mediates this modification. Furthermore, arginine residues with a crucial function for RNA export and for binding of the cellular RNA export factor UAP56 as well as PRMT6 were mapped within the arginine-rich R1 motif of pUL69. Importantly, we demonstrated that mutation of those arginines did not alter the secondary structure of R1, suggesting that they may serve as critical methylation substrates. In summary, our study reveals a novel posttranslational modification of pUL69 which has a significant impact on the function of this important viral regulatory protein. Since PRMTs appear to be amenable to selective inhibition by small molecules, this may constitute a novel target for antiviral therapy.


Assuntos
Citomegalovirus/fisiologia , Transporte de RNA/fisiologia , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Transativadores/metabolismo , Replicação Viral/fisiologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células HeLa , Humanos , Metilação , Proteínas Nucleares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína-Arginina N-Metiltransferases , RNA Mensageiro/genética , RNA Viral/genética , Transativadores/genética
7.
Viruses ; 16(9)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39339958

RESUMO

The human cytomegalovirus (HCMV) glycoprotein B (gB) is the viral fusogen required for entry into cells and for direct cell-to-cell spread of the virus. We have previously demonstrated that the exchange of the carboxy-terminal domain (CTD) of gB for the CTD of the structurally related fusion protein G of the vesicular stomatitis virus (VSV-G) resulted in an intrinsically fusion-active gB variant (gB/VSV-G). In this present study, we employed a dual split protein (DSP)-based cell fusion assay to further characterize the determinants of fusion activity in the CTD of gB. We generated a comprehensive library of gB CTD truncation mutants and identified two mutants, gB-787 and gB-807, which were fusion-competent and induced the formation of multinucleated cell syncytia in the absence of other HCMV proteins. Structural modeling coupled with site-directed mutagenesis revealed that gB fusion activity is primarily mediated by the CTD helix 2, and secondarily by the recruitment of cellular SH2/WW-domain-containing proteins. The fusion activity of gB-807 was inhibited by gB-specific monoclonal antibodies (MAbs) targeting the antigenic domains AD-1 to AD-5 within the ectodomain and not restricted to MAbs directed against AD-4 and AD-5 as observed for gB/VSV-G. This finding suggested a differential regulation of the fusion-active conformational state of both gB variants. Collectively, our findings underscore a pivotal role of the CTD in regulating the fusogenicity of HCMV gB, with important implications for understanding the conformations of gB that facilitate membrane fusion, including antigenic structures that could be targeted by antibodies to block this essential step in HCMV infection.


Assuntos
Citomegalovirus , Domínios Proteicos , Proteínas do Envelope Viral , Internalização do Vírus , Humanos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/química , Citomegalovirus/genética , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/virologia , Células Gigantes/virologia , Linhagem Celular , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Proteínas Virais de Fusão/química , Mutagênese Sítio-Dirigida , Fusão Celular
8.
Viruses ; 16(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38932161

RESUMO

Human cytomegalovirus is a ubiquitous herpesvirus that, while latent in most individuals, poses a great risk to immunocompromised patients. In contrast to directly acting traditional antiviral drugs, such as ganciclovir, we aim to emulate a physiological infection control using T cells. For this, we constructed several bispecific T-cell engager (BiTE) constructs targeting different viral glycoproteins of the murine cytomegalovirus and evaluated them in vitro for their efficacy. To isolate the target specific effect without viral immune evasion, we established stable reporter cell lines expressing the viral target glycoprotein B, and the glycoprotein complexes gN-gM and gH-gL, as well as nano-luciferase (nLuc). First, we evaluated binding capacities using flow cytometry and established killing assays, measuring nLuc-release upon cell lysis. All BiTE constructs proved to be functional mediators for T-cell recruitment and will allow a proof of concept for this treatment option. This might pave the way for strikingly safer immunosuppression in vulnerable patient groups.


Assuntos
Muromegalovirus , Linfócitos T , Animais , Linfócitos T/imunologia , Camundongos , Muromegalovirus/imunologia , Muromegalovirus/fisiologia , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Linhagem Celular , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
9.
mBio ; 15(10): e0181224, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39315800

RESUMO

Cell entry is a crucial step for a virus to infect a host cell. Human cytomegalovirus utilizes glycoprotein B (gB) to fuse the viral and host cell membranes upon receptor binding of gH/gL-containing complexes. Fusion is mediated by major conformational changes of gB from a metastable pre-fusion to a stable post-fusion state whereby the central trimeric coiled-coils, formed by domain (Dom)III α helices, remain structurally nearly unchanged. To better understand the role of the stable core, we individually introduced three potentially helix-breaking or one disulfide bond-breaking mutation in the DIII α3 to study different aspects of the viral behavior upon long-term culturing. Two of the three helix-breaking mutations, gB_Y494P and gB_I495P, were lethal for the virus in either fibroblasts or epithelial cells. The third substitution, gB_G493P, on the other hand, displayed a delayed replication and spread, which was more pronounced in epithelial cells, hinting at an impaired fusion. Interestingly, the disulfide bond-breaker mutation, gB_C507S, performed strikingly differently in the two cell types - lethal in epithelial cells and an atypical phenotype in fibroblasts, respectively. Replication curve analyses paired with the infection efficiency, the spread morphology, and the cell-cell fusogenicity suggest a dysregulated fusion process, which could be reverted by second-site mutations mapping predominantly to gB DomV. Our findings underline the functional importance of a stable DomIII core for a well-regulated DomV rearrangement during fusion.IMPORTANCEHuman cytomegalovirus (HCMV) can establish a lifelong infection. In most people, the infection follows an asymptomatic course; however, it is a major cause of morbidity and mortality in immunocompromised patients or neonates. HCMV has a very broad cell tropism, ranging from fibroblasts to epi- and endothelial cells. The virus uses different entry pathways utilizing the core fusion machinery consisting of glycoprotein complexes gH/gL and glycoprotein B (gB). The fusion protein gB undergoes fundamental rearrangements from a metastable pre-fusion to a stable post-fusion conformation. Here, we characterized the viral behavior after the introduction of four single-point mutations in the gB central core. These led to various cell type-specific atypical phenotypes and the emergence of compensatory mutations, demonstrating an important interaction between domains III and V. We provide a new basis for the development of a structurally and functionally altered gB, which can further serve as a tool for drug and vaccine development.


Assuntos
Citomegalovirus , Proteínas do Envelope Viral , Internalização do Vírus , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/química , Humanos , Citomegalovirus/genética , Citomegalovirus/fisiologia , Fibroblastos/virologia , Mutação , Células Epiteliais/virologia , Replicação Viral , Linhagem Celular , Conformação Proteica , Domínios Proteicos
10.
J Virol ; 86(13): 7448-53, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22553320

RESUMO

Nucleocytoplasmic shuttling and interaction with the cellular mRNA export factor UAP56 are prerequisites for the mRNA export activity of human cytomegalovirus (HCMV) pUL69. Although the murine cytomegalovirus homolog pM69 shuttles, it fails to export mRNAs due to its inability to recruit UAP56. However, chimeric proteins comprising pM69 fused to N-terminal pUL69 fragments, including its UAP56 interaction motif, acquire mRNA export activity. Importantly, growth curves of recombinant HCMVs illustrate that such a chimeric protein, but not pM69, substitutes for pUL69 during HCMV infection.


Assuntos
RNA Helicases DEAD-box/metabolismo , Muromegalovirus/genética , Transativadores/genética , Transativadores/metabolismo , Replicação Viral , Animais , Transporte Biológico , Citomegalovirus/genética , Citomegalovirus/fisiologia , Humanos , Camundongos , Muromegalovirus/fisiologia , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Cuad Bioet ; 34(111): 175-188, 2023.
Artigo em Espanhol | MEDLINE | ID: mdl-37804491

RESUMO

Human-animal chimera research has gradually evolved to the present day, in which large projects related to the attempt to solve pathologies that help us human beings to alleviate diseases. However, it must be considered that many of these advances in science imply an important ethical dilemma in many cases, and even more so if we involve people in said experiments. In the present systematic review we sought to identify these ethical problems related to chimeras, as well as possible solutions to them proposed in the literature, including technical means for the realization of less humanized chimeras. A bibliographic search was carried out in the Pubmed, Embase and Medes databases on January 4 th, 2022. The articles that strictly comply with the objectives selected for the completion of the work will be selected. A total of 21 articles makes up our sample, from which ethical problems related to chimeras, possible solutions and technical means to avoid obtaining too humanized chimeras will be extracted. The issues identified in the articles are problems related to animal welfare, acquisition of human traits from chimeras, medical concerns derived from experimentation such as zoonoses, the origin of pluripotential cells for chimera production, the creation of human gametes by said chimeras, neurological chimerism and the moral status of chimeras. This paper provides solutions for these problems, such as the use of suicide genes in human cells that would be activated if they differentiate into neuronal cells or the use of gene editing through the CRISPR/Cas9 mechanism to incapacitate these cells so that they do not differentiate into neuronal cells. The only question that remains elusive to the proposal of solutions is the one related to the potential moral status of chimeras. It is certainly a complex issue given the variety of proposals on the concept of moral status available in literature. It is therefore necessary to bring these proposals closer to reflection on human-animal chimeras in order to initiate a discussion that can shed light on this issue.


Assuntos
Quimera , Ética em Pesquisa , Animais , Humanos
12.
Viruses ; 15(7)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37515187

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was responsible for the COVID-19 pandemic, efficiently spreads cell-to-cell through mechanisms facilitated by its membrane glycoprotein spike. We established a dual split protein (DSP) assay based on the complementation of GFP and luciferase to quantify the fusogenic activity of the SARS-CoV-2 spike protein. We provide several lines of evidence that the spike protein of SARS-CoV-2, but not SARS-CoV-1, induced cell-cell fusion even in the absence of its receptor, angiotensin-converting enzyme 2 (ACE2). This poorly described ACE2-independent cell fusion activity of the spike protein was strictly dependent on the proteasomal cleavage of the spike by furin while TMPRSS2 was dispensable. Previous and current variants of concern (VOCs) differed significantly in their fusogenicity. The Delta spike was extremely potent compared to Alpha, Beta, Gamma and Kappa, while the Omicron spike was almost devoid of receptor-independent fusion activity. Nonetheless, for all analyzed variants, cell fusion was dependent on furin cleavage and could be pharmacologically inhibited with CMK. Mapping studies revealed that amino acids 652-1273 conferred the ACE2-independent fusion activity of the spike. Unexpectedly, residues proximal to the furin cleavage site were not of major relevance, whereas residue 655 critically regulated fusion. Finally, we found that the spike's fusion activity in the absence of ACE2 could be inhibited by antibodies directed against its N-terminal domain (NTD) but not by antibodies targeting its receptor-binding domain (RBD). In conclusion, our BSL-1-compatible DSP assay allowed us to screen for inhibitors or antibodies that interfere with the spike's fusogenic activity and may therefore contribute to both rational vaccine design and development of novel treatment options against SARS-CoV-2.


Assuntos
COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Monoclonais , Fusão Celular , Furina/metabolismo , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
J Virol ; 85(4): 1804-19, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21147923

RESUMO

UL69 of human cytomegalovirus (HCMV) encodes a pleiotropic transactivator protein and has a counterpart in every member of the Herpesviridae family thus far sequenced. However, little is known about the conservation of the functions of the nuclear phosphoprotein pUL69 in the homologous proteins of other betaherpesviruses. Therefore, eukaryotic expression vectors were constructed for pC69 of chimpanzee cytomegalovirus, pRh69 of rhesus cytomegalovirus, pM69 of murine cytomegalovirus, pU42 of human herpesvirus 6, and pU42 of elephant endotheliotropic herpesvirus. Indirect immunofluorescence experiments showed that all pUL69 homologs expressed by these vectors were localized to the cell nucleus. Coimmunoprecipitation experiments identified homodimerization as a conserved feature of all homologs, whereas heterodimerization with pUL69 was restricted to its closer relatives. Further analyses demonstrated that pC69 and pRh69 were the only two homologs that functioned, like pUL69, as viral-mRNA export factors. As we had reported recently that nucleocytoplasmic shuttling and interaction with the cellular DExD/H-box helicases UAP56 and URH49 were prerequisites for the nuclear-mRNA export activity of pUL69, the homologs were characterized with regard to these properties. Heterokaryon assays demonstrated nucleocytoplasmic shuttling for all homologs, and coimmunoprecipitation and mRNA export assays revealed that the interaction of UAP56 and/or URH49 with pC69 or pRh69 was required for mRNA export activity. Moreover, characterization of HCMV recombinants harboring mutations within the N-terminal sequence of pUL69 revealed a strong replication defect of viruses expressing pUL69 variants that were deficient in UAP56 binding. In summary, homodimerization and nucleocytoplasmic shuttling activity were identified as conserved features of betaherpesviral pUL69 homologs. UAP56 binding was shown to represent a unique characteristic of members of the genus Cytomegalovirus that is required for efficient replication of HCMV.


Assuntos
Transporte Ativo do Núcleo Celular , Betaherpesvirinae/fisiologia , RNA Helicases DEAD-box/metabolismo , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Replicação Viral , Animais , Betaherpesvirinae/genética , Betaherpesvirinae/metabolismo , Núcleo Celular/metabolismo , Citomegalovirus/genética , Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , RNA Helicases DEAD-box/genética , Dimerização , Células HEK293 , Células HeLa , Humanos , Camundongos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Transativadores/química , Transativadores/genética
14.
Viruses ; 14(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35215877

RESUMO

Human cytomegalovirus (HCMV) can cause severe clinical disease in immunocompromised individuals, such as allograft recipients and infants infected in utero. Neutralizing activity of antibodies, measured as the ability to prevent the entry of cell-free virus, has been correlated with the reduction in HCMV transmission and the severity of HCMV-associated disease. However, in vivo HCMV amplification may occur mainly via cell-to-cell spread. Thus, quantifying the inhibition of cell-to-cell transmission could be important in the evaluation of therapeutic antibodies and/or humoral responses to infection or immunization. Here, we established a quantitative plaque reduction assay, which allowed for the measurement of the capacity of antibodies to limit HCMV spread in vitro. Using an automated fluorescence spot reader, infection progression was assayed by the expansion of viral plaques during the course of infection with various GFP-expressing viruses. We found that in contrast to non-neutralizing monoclonal antibodies (mAbs), neutralizing mAbs against both glycoprotein B and H (gB and gH) could significantly inhibit viral plaque expansion of different HCMV strains and was equally efficient in fibroblasts as in epithelial cells. In contrast, an anti-pentamer mAb was active only in epithelial cells. Taken together, our data demonstrate that specific anti-HCMV mAbs can significantly limit cell-associated virus spread in vitro.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Células Epiteliais/virologia , Fibroblastos/virologia , Anticorpos Monoclonais/imunologia , Linhagem Celular , Células Cultivadas , Humanos , Proteínas do Envelope Viral/imunologia , Ensaio de Placa Viral , Internalização do Vírus
15.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468685

RESUMO

The HIV-1 Rev protein is a nuclear export factor for unspliced and incompletely spliced HIV-1 RNAs. Without Rev, these intron-retaining RNAs are trapped in the nucleus. A genome-wide screen identified nine proteins of the spliceosome, which all enhanced expression from the HIV-1 unspliced RNA after CRISPR/Cas knockdown. Depletion of DHX38, WDR70, and four proteins of the Prp19-associated complex (ISY1, BUD31, XAB2, and CRNKL1) resulted in a more than 20-fold enhancement of unspliced HIV-1 RNA levels in the cytoplasm. Targeting of CRNKL1, DHX38, and BUD31 affected nuclear export efficiencies of the HIV-1 unspliced RNA to a much larger extent than splicing. Transcriptomic analyses further revealed that CRNKL1 also suppresses cytoplasmic levels of a subset of cellular mRNAs, including some with selectively retained introns. Thus, CRNKL1-dependent nuclear retention is a novel cellular mechanism for the regulation of cytoplasmic levels of intron-retaining HIV-1 mRNAs, which HIV-1 may have harnessed to direct its complex splicing pattern.IMPORTANCE To regulate its complex splicing pattern, HIV-1 uses the adaptor protein Rev to shuttle unspliced or partially spliced mRNA from the nucleus to the cytoplasm. In the absence of Rev, these RNAs are retained in the nucleus, but it is unclear why. Here we identify cellular proteins whose depletion enhances cytoplasmic levels of the HIV-1 unspliced RNA. Depletion of one of them, CRNKL1, also increases cytoplasmic levels of a subset of intron-retaining cellular mRNA, suggesting that CRNKL1-dependent nuclear retention may be a basic cellular mechanism exploited by HIV-1.


Assuntos
HIV-1/genética , Proteínas Nucleares/genética , Splicing de RNA , RNA Mensageiro/genética , RNA Viral/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Núcleo Celular/genética , Núcleo Celular/virologia , Citosol/metabolismo , Citosol/virologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Éxons , Redes Reguladoras de Genes , HIV-1/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Íntrons , Células Jurkat , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Transcriptoma , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo
16.
Virus Res ; 285: 198023, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32428517

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous human pathogen of high clinical relevance. Despite intensive research of virus-host interaction, crucial details still remain unknown. In this study, the role of the cellular peptidyl-prolyl cis/trans isomerase Pin1 during HCMV infection was investigated. Pin1 is able to recognize phosphorylated serine/threonine-proline motifs and regulates the structural conformation, stability and function of its substrates. Concerning HCMV replication, our recent studies revealed that Pin1 plays an important role in viral nuclear egress by contributing to the depletion of the nuclear lamina at distinct sites through the cis/trans conversion of lamin proteins. Here, novel data illustrate the HCMV-induced upregulation of Pin1 including various cell types being permissive, semi-permissive or non-permissive for productive HCMV replication. Addressing the question of functional impact, Pin1 knock-out (KO) did not show a measurable effect on viral protein expression, at least when assessed by Western blot analysis. Applying highly sensitive methods of qPCR and plaque titration, a pharmacological inhibition of Pin1 activity, however, led to a significant decrease of viral genome equivalents and production of infectious virus, respectively. When focusing on the identification of viral proteins interacting with Pin1 by various coimmunoprecipitation (CoIP) settings, we obtained positive signals for (i) the core nuclear egress complex protein pUL50, (ii) the viral mRNA export factor pUL69 and (iii) the viral DNA polymerase processivity factor pUL44. Confocal immunofluorescence analysis focusing on partial colocalization between Pin1 and the coexpressed viral proteins pUL50, pUL69 or pUL44, respectively, was consistent with the CoIP experiments. Mapping experiments, using transient expression constructs for a series of truncated protein versions and specific replacement mutants, revealed a complex pattern of Pin1 interaction with these three early regulatory HCMV proteins. Data suggest a combination of different modes of Pin1 interactions, involving both classical phosphorylation-dependent Pin1 binding motifs and additional phosphorylation-independent binding sites. Combined, these results support the concept that Pin1 may play an important role in several stages of HCMV infection, thus determining viral replicative efficiency.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Células HEK293 , Humanos , Proteínas Virais/metabolismo , Replicação Viral
17.
Mol Cell Biol ; 26(5): 1631-43, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16478985

RESUMO

The UL69 gene product of human cytomegalovirus belongs to a family of regulatory proteins conserved among all herpesviruses that have in part been characterized as posttranscriptional transactivators participating in the nuclear export of RNA. Recent experiments suggested that pUL69 also acts as a posttranscriptional activator since it was demonstrated that nucleocytoplasmic shuttling via a CRM1-independent nuclear export signal is a prerequisite for its stimulatory effect on gene expression. Based on these findings we initiated studies to investigate the role of pUL69 in mRNA export and demonstrate that pUL69 efficiently promotes the cytoplasmic accumulation of unspliced RNA. Furthermore, we show that this pUL69 activity is linked to the cellular mRNA export machinery by direct protein interaction with the highly related DEXD/H-box RNA helicases UAP56 and URH49. Particularly, we identified a 12-amino-acid domain within the N terminus of pUL69 which is required for binding to UAP56 and URH49, and we could demonstrate that UAP56 interaction and nucleocytoplasmic shuttling are both prerequisites for pUL69-mediated mRNA export. Thus, we identified a novel cellular target which provides a herpesviral regulatory protein with access to a conserved cellular transport system in order to promote nuclear export of unspliced RNA.


Assuntos
Citoplasma/genética , RNA Helicases/metabolismo , Splicing de RNA , RNA Viral/metabolismo , Transativadores/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Sequência de Aminoácidos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Citomegalovirus/genética , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidade , Citoplasma/metabolismo , RNA Helicases DEAD-box , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Células HeLa/virologia , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Dados de Sequência Molecular , Mutação , RNA Helicases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transativadores/genética , Proteínas Virais/genética , Proteína Exportina 1
18.
Cuad. bioét ; 34(111): 178-188, may.- ago. 2023. tab, graf
Artigo em Espanhol | IBECS (Espanha) | ID: ibc-226232

RESUMO

Las investigaciones con quimeras humano-animales han evolucionado gradualmente hasta día de hoy, en que se plantean grandes proyectos relacionados con el intento de solucionar patologías que nos ayu den a los seres humanos a paliar enfermedades. Sin embargo, se debe de tener en cuenta, que muchos de estos avances científicos llevan implícito un dilema ético importante en muchos casos, y más si se involucra a personas en dichos experimentos. En la presente revisión sistemática se buscó identificar estos problemas éticos relacionados con las quimeras, así como posibles soluciones a los mismos propuestas en la literatura, incluyendo medios técnicos para la realización de quimeras menos humanizadas. Se realizó una búsqueda bibliográfica sistemática en las bases de datos Pubmed, Embase y Medes con fecha 4 de enero de 2022. Se seleccionan los artículos que cumplían estrictamente con los objetivos seleccionados para la realización del trabajo. Un total de 21 artículos componen nuestra muestra, de los cuales se extraen problemas éticos relacionados con las quimeras, posibles soluciones y medios técnicos para evitar la obtención de quimeras demasiado humanizadas. Las cuestiones identificadas en los artículos seleccionados son problemas relacio nados con el bienestar animal, adquisición de rasgos humanos de las quimeras, preocupaciones médicas derivadas de la experimentación como pueden ser las zoonosis, el origen de las células pluripontenciales para la realización de quimeras, la creación de gametos humanos por parte de dichas quimeras, el qui merismo neurológico y el estatus moral de las quimeras. En el trabajo se aportan soluciones para estos problemas, tales como la utilización de genes suicidas en las células humanas que se activarían si estas se diferencian en células neuronales o el uso de la edición genética mediante el mecanismo CRISPR/Cas9 para incapacitar a estas células para que no se diferencien en células neuronales (AU)


Human-animal chimera research has gradually evolved to the present day, in which large projects re lated to the attempt to solve pathologies that help us human beings to alleviate diseases. However, it must be considered that many of these advances in science imply an important ethical dilemma in many cases, and even more so if we involve people in said experiments. In the present systematic review we sought to identify these ethical problems related to chimeras, as well as possible solutions to them proposed in the literature, including technical means for the realization of less humanized chimeras. A bibliographic search was carried out in the Pubmed, Embase and Medes databases on January 4th, 2022. The articles that strictly comply with the objectives selected for the completion of the work will be selected. A total of 21 articles makes up our sample, from which ethical problems related to chimeras, possible solutions and technical means to avoid obtaining too humanized chimeras will be extracted. The issues identified in the articles are problems related to animal welfare, acquisition of human traits from chimeras, medical concerns derived from experimentation such as zoonoses, the origin of pluripotential cells for chimera production, the cre ation of human gametes by said chimeras, neurological chimerism and the moral status of chimeras. This paper provides solutions for these problems, such as the use of suicide genes in human cells that would be activated if they differentiate into neuronal cells or the use of gene editing through the CRISPR/Cas9 mech anism to incapacitate these cells so that they do not differentiate into neuronal cells. The only question that remains elusive to the proposal of solutions is the one related to the potential moral status of chime ras (AU)


Assuntos
Humanos , Experimentação Animal/ética , Experimentação Humana/ética , Ética em Pesquisa , Quimera
19.
Methods Mol Biol ; 1119: 197-216, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24639225

RESUMO

One defining feature of eukaryotic cells is their compartmentalization into nucleus and cytoplasm which provides sophisticated opportunities for the regulation of gene expression. Accurate subcellular localization is crucial for the effective function of most viral macromolecules, and nuclear translocation is central to the function of herpesviral proteins that are involved in processes such as transcription or DNA replication. Human cytomegalovirus (HCMV) encodes several transactivator proteins which stimulate viral gene expression either on the transcriptional or posttranscriptional level. In this chapter, we focus on nucleocytoplasmic transport mechanisms of either proteins or RNA that are utilized during HCMV infection. We describe commonly used assays to determine the subcellular localization of a protein, its nucleocytoplasmic shuttling activity, its capacity to export unspliced RNA from the nucleus, and its association with RNA in vivo.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Citomegalovirus/genética , Biologia Molecular/métodos , RNA Viral/genética , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Regulação Viral da Expressão Gênica , Humanos , Proteínas Virais/biossíntese
20.
Virology ; 432(2): 444-51, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22832123

RESUMO

The HIV-1 accessory protein Vpr induces G2 cell cycle arrest and apoptosis. Previous studies indicate that the induction of G2-arrest requires the localization of Vpr to the nuclear envelope. Here we show that treatment of Vpr-expressing HeLa cells with the caspase 3 inhibitor Z-DEVD-fmk induced accumulation of Vpr at the nuclear lamina, while other proteins or structures of the nuclear envelope were not influenced. Furthermore, Z-DEVD-fmk enhances the Vpr-mediated G2-arrest that even occurred in HIV-1(NL4-3)-infected T-cells. Mutation of Pro-35, which is important for the integrity of helix-α1 in Vpr, completely abrogated the Z-DEVD-fmk-mediated accumulation of Vpr at the nuclear lamina and the enhancement of G2-arrest. As expected, inhibition of caspase 3 reduced the induction of apoptosis by Vpr. Taken together, we could show that besides its role in Vpr-mediated apoptosis induction caspase 3 influences the localization of Vpr at the nuclear envelope and thereby augments the Vpr-induced G2-arrest.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Membrana Nuclear/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Sobrevivência Celular , HIV-1/metabolismo , Células HeLa/virologia , Humanos , Células Jurkat/virologia , Transfecção , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA