Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894865

RESUMO

Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, by which mechanism(s). To test this, metabolic stress was induced in THP-1 cells and primary human monocytes by treatments with lipopolysaccharide (LPS), palmitic acid (PA), or oleic acid (OA), in the presence or absence of the ER stressor thapsigargin (TG). Gene expression of tumor necrosis factor (TNF)-α and markers of ER/oxidative stress were determined by qRT-PCR, TNF-α protein by ELISA, reactive oxygen species (ROS) by DCFH-DA assay, hypoxia-inducible factor 1-alpha (HIF-1α), p38, extracellular signal-regulated kinase (ERK)-1,2, and nuclear factor kappa B (NF-κB) phosphorylation by immunoblotting, and insulin sensitivity by glucose-uptake assay. Regarding clinical analyses, adipose TNF-α was assessed using qRT-PCR/IHC and plasma TNF-α, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and oxidized low-density lipoprotein (OX-LDL) via ELISA. We found that the cooperative interaction between metabolic and ER stresses promoted TNF-α, ROS, CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF2) expression (p ≤ 0.0183),. However, glucose uptake was not impaired. TNF-α amplification was dependent on HIF-1α stabilization and p38 MAPK/p65 NF-κB phosphorylation, while the MAPK/NF-κB pathway inhibitors and antioxidants/ROS scavengers such as curcumin, allopurinol, and apocynin attenuated the TNF-α production (p ≤ 0.05). Individuals with obesity displayed increased adipose TNF-α gene/protein expression as well as elevated plasma levels of TNF-α, CRP, MDA, and OX-LDL (p ≤ 0.05). Our findings support a metabolic-ER stress cooperativity model, favoring inflammation by triggering TNF-α production via the ROS/CHOP/HIF-1α and MAPK/NF-κB dependent mechanisms. This study also highlights the therapeutic potential of antioxidants in inflammatory conditions involving metabolic/ER stresses.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , Estresse do Retículo Endoplasmático , Glucose , Inflamação , NF-kappa B/metabolismo , Obesidade , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
2.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299302

RESUMO

Short-chain fatty acid (SCFA) acetate, a byproduct of dietary fiber metabolism by gut bacteria, has multiple immunomodulatory functions. The anti-inflammatory role of acetate is well documented; however, its effect on monocyte chemoattractant protein-1 (MCP-1) production is unknown. Similarly, the comparative effect of SCFA on MCP-1 expression in monocytes and macrophages remains unclear. We investigated whether acetate modulates TNFα-mediated MCP-1/CCL2 production in monocytes/macrophages and, if so, by which mechanism(s). Monocytic cells were exposed to acetate with/without TNFα for 24 h, and MCP-1 expression was measured. Monocytes treated with acetate in combination with TNFα resulted in significantly greater MCP-1 production compared to TNFα treatment alone, indicating a synergistic effect. On the contrary, treatment with acetate in combination with TNFα suppressed MCP-1 production in macrophages. The synergistic upregulation of MCP-1 was mediated through the activation of long-chain fatty acyl-CoA synthetase 1 (ACSL1). However, the inhibition of other bioactive lipid enzymes [carnitine palmitoyltransferase I (CPT I) or serine palmitoyltransferase (SPT)] did not affect this synergy. Moreover, MCP-1 expression was significantly reduced by the inhibition of p38 MAPK, ERK1/2, and NF-κB signaling. The inhibition of ACSL1 attenuated the acetate/TNFα-mediated phosphorylation of p38 MAPK, ERK1/2, and NF-κB. Increased NF-κB/AP-1 activity, resulting from acetate/TNFα co-stimulation, was decreased by ACSL1 inhibition. In conclusion, this study demonstrates the proinflammatory effects of acetate on TNF-α-mediated MCP-1 production via the ACSL1/MAPK/NF-κB axis in monocytic cells, while a paradoxical effect was observed in THP-1-derived macrophages.


Assuntos
Acetatos/farmacologia , Quimiocina CCL2/biossíntese , Ácidos Graxos Voláteis/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Acetatos/administração & dosagem , Quimiocina CCL2/genética , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Voláteis/administração & dosagem , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Monócitos/imunologia , NF-kappa B/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1 , Triazenos/farmacologia , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/farmacologia
3.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638857

RESUMO

IL-8/MCP-1 act as neutrophil/monocyte chemoattractants, respectively. Oxidative stress emerges as a key player in the pathophysiology of obesity. However, it remains unclear whether the TNF-α/oxidative stress interplay can trigger IL-8/MCP-1 expression and, if so, by which mechanism(s). IL-8/MCP-1 adipose expression was detected in lean, overweight, and obese individuals, 15 each, using immunohistochemistry. To detect the role of reactive oxygen species (ROS)/TNF-α synergy as a chemokine driver, THP-1 cells were stimulated with TNF-α, with/without H2O2 or hypoxia. Target gene expression was measured by qRT-PCR, proteins by flow cytometry/confocal microscopy, ROS by DCFH-DA assay, and signaling pathways by immunoblotting. IL-8/MCP-1 adipose expression was significantly higher in obese/overweight. Furthermore, IL-8/MCP-1 mRNA/protein was amplified in monocytic cells following stimulation with TNF-α in the presence of H2O2 or hypoxia (p ˂ 0.0001). Synergistic chemokine upregulation was related to the ROS levels, while pre-treatments with NAC suppressed this chemokine elevation (p ≤ 0.01). The ROS/TNF-α crosstalk involved upregulation of CHOP, ERN1, HIF1A, and NF-κB/ERK-1,2 mediated signaling. In conclusion, IL-8/MCP-1 adipose expression is elevated in obesity. Mechanistically, ROS/TNF-α crosstalk may drive expression of these chemokines in monocytic cells by inducing ER stress, HIF1A stabilization, and signaling via NF-κB/ERK-1,2. NAC had inhibitory effect on oxidative stress-driven IL-8/MCP-1 expression, which may have therapeutic significance regarding meta-inflammation.


Assuntos
Quimiocina CCL2/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peróxido de Hidrogênio/farmacologia , Interleucina-8/genética , Monócitos/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Tecido Adiposo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiocina CCL2/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células THP-1
4.
J Immunol ; 200(10): 3599-3611, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632147

RESUMO

The chemokine CCL2 (also known as MCP-1) is a key regulator of monocyte infiltration into adipose tissue, which plays a central role in the pathophysiology of obesity-associated inflammation and insulin resistance. It remains unclear how CCL2 production is upregulated in obese humans and rodents. Because elevated levels of the free fatty acid (FFA) palmitate and TNF-α have been reported in obesity, we studied whether these agents interact to trigger CCL2 production. Our data show that treatment of THP-1 and primary human monocytic cells with palmitate and TNF-α led to a marked increase in CCL2 production compared with either treatment alone. Mechanistically, we found that cooperative production of CCL2 by palmitate and TNF-α did not require MyD88, but it was attenuated by blocking TLR4 or TRIF. IRF3-deficient cells did not show synergistic CCL2 production in response to palmitate/TNF-α. Moreover, IRF3 activation by polyinosinic-polycytidylic acid augmented TNF-α-induced CCL2 secretion. Interestingly, elevated NF-κB/AP-1 activity resulting from palmitate/TNF-α costimulation was attenuated by TRIF/IRF3 inhibition. Diet-induced C57BL/6 obese mice with high FFAs levels showed a strong correlation between TNF-α and CCL2 in plasma and adipose tissue and, as expected, also showed increased adipose tissue macrophage accumulation compared with lean mice. Similar results were observed in the adipose tissue samples from obese humans. Overall, our findings support a model in which elevated FFAs in obesity create a milieu for TNF-α to trigger CCL2 production via the TLR4/TRIF/IRF3 signaling cascade, representing a potential contribution of FFAs to metabolic inflammation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Quimiocina CCL2/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Palmitatos/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Linhagem Celular , Humanos , Resistência à Insulina/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
5.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066575

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a monomeric glycoprotein that has been implicated in the tumor growth and progression of different types of cancer. GM-CSF is produced by various non-immune cells including MDA-MB-231 in response to various stimuli. However, the role of lipopolysaccharide (LPS) in the regulation of GM-CSF in MDA-MB-231 breast cancer cells so far remains unclear. Herein, we asked whether LPS could induce GM-CSF production in MDA-MB-231 cells, and if so, which signaling pathway was involved. MDA-MB-231 cells were treated with LPS or tumor necrosis factor alpha (TNF-α; positive control), and GM-CSF expression levels were determined by qRT-PCR, ELISA, and confocal microscopy. Phosphorylation of the mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-kB) signaling proteins were evaluated by flow cytometry. Our results show that LPS induces GM-CSF expression at both mRNA and protein levels in MDA-MBA-231 cells. Inhibition of acyl-CoA synthetase 1 (ACSL1) activity in the cells with triacsin C significantly reduces the secretion of GM-CSF. Furthermore, the inhibition of ACSL1 activity significantly blocks the LPS-mediated phosphorylation of p38 MAPK, MEK1/2, extracellular signal-regulated kinase (ERK)1/2, c-Jun NH2-terminal kinase (JNK), and nuclear factor-κB (NF-kB) in the cells. These findings provide the first evidence that LPS induces ACSL1-dependent GM-CSF gene expression in MDA-MB-231 breast cancer cells, which requires the activation of p38 MAPK, MEK1/2, ERK1/2, JNK, and NF-kB.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Coenzima A Ligases/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Lipopolissacarídeos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
6.
Cell Physiol Biochem ; 53(1): 1-18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31162913

RESUMO

BACKGROUND/AIMS: Innate immune toll-like receptors (TLRs) are emerging as nutrient sensors. Oxidative stress in the adipose tissue in obesity acts as a critical early trigger of altered pathophysiology. TLR2/TLR4 adipose upregulation has been associated with insulin resistance in humans; however, it remains unclear whether oxidative stress can modulate expression of TLR2/4 and related immune-metabolic regulators (IRF3/5) in immune cells. We, therefore, assessed their expression along with proinflammatory cytokines in the human PBMC following induction of oxidative stress. METHODS: PBMC were isolated from blood of healthy donors using Ficoll-Paque method and cells were treated with H2O2 to induce oxidative stress. ROS was measured by DCFH-DA assay. Target gene and protein expression was determined using real-time RT-PCR and flow cytometry/confocal microscopy, respectively. TLR2/4 expression by H2O2 in presence of ROS-inhibitors or leptin/LPS/fatty acids was also assessed. Expression of phosphorylated/total ERK1/2, c-Jun, p38, and NF-κB was determined by western blotting. The data (mean±SEM) were compared using unpaired student's t-test or ANOVA; all P-values <0.05 were considered significant. RESULTS: TLR2/4 mRNA/protein expression was elevated by oxidative stress in PBMC compared to controls (P<0.001). This induction was abrogated by apocynin/N-acetyl cysteine treatments (P<0.01). H2O2-induced TLR2/4 gene expression was further enhanced by leptin, LPS, oleate, or palmitate (P<0.05). Oxidative stress also promoted expression of IRF3/5 and proinflammatory cytokines including IFN-γ, IL-1ß, IL-6, TNF-α, and MCP-1/CCL2. This oxidative stress in PBMC involved MAPK/NF-κB dependent signaling. CONCLUSION: Taken together, oxidative stress upregulates expression of TLR2/4, IRF3/5 and signature proinflammatory cytokines in PBMC, involving MAPK/NF-κB dependent signaling, all of which may have implications for metabolic inflammation.


Assuntos
Inflamação/genética , Estresse Oxidativo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Regulação para Cima , Células Cultivadas , Humanos , Inflamação/metabolismo , Fator Regulador 3 de Interferon/genética , Fatores Reguladores de Interferon/genética , Leucócitos Mononucleares/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Cell Physiol Biochem ; 52(2): 212-224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30816669

RESUMO

BACKGROUND/AIMS: MIP-1α (macrophage inflammatory protein 1α)/CCL3 chemokine is associated with the adipose tissue inflammation in obesity. Both MIP-1α and free fatty acids are elevated in obesity/T2D. We asked if free fatty acid palmitate could modulate MIP1α expression in the human monocytic cells. METHODS: Human monocytic THP-1 cells and macrophages were stimulated with palmitate and TNF-α (positive control). MIP-1α expression was measured with real time RT-PCR, Flow Cytometry and ELISA. Signaling pathways were identified by using THP-1-XBlue™ cells, THP-1-XBlue™-defMyD cells, anti-TLR4 mAb and TLR4 siRNA. RESULTS: Our data show that palmitate induced significant increase in MIP1α production in monocytic THP-1 cells/macrophages. MIP-1α induction was significantly suppressed when cells were treated with anti-TLR4 antibody prior stimulation with palmitate. Using TLR4 siRNA, we further demonstrate that palmitate-induced MIP-1α expression in monocytic cells requires TLR4. Moreover, THP1 cells defective in MyD88, a major adaptor protein involved in TLR4 signaling, were unable to induce MIP-1α production in response to palmitate. Palmitate-induced MIP-1α expression was suppressed by inhibition of MAPK, NFkB and PI3K signaling pathways. In addition, palmitate-induced NF-κB/AP-1 activation was observed while production of MIP-1α. However, this activation of NF-κB/AP-1 was abrogated in MyD88 deficient cells. CONCLUSION: Overall, these results show that palmitate induces TLR4dependent MIP-1α expression requiring the MyD88 recruitment and activation of MAPK, NF-κB/AP-1 and PI3K signaling. It implies that the increased systemic levels of free fatty acid palmitate in obesity/T2D may contribute to metabolic inflammation through excessive production of MIP-1a.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/metabolismo , Ácido Palmítico/farmacologia , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Macrófagos/patologia , Monócitos/patologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Células THP-1 , Receptor 4 Toll-Like/genética
8.
Int J Mol Sci ; 20(17)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443599

RESUMO

Elevated levels of IL-8 (CXCL8) in obesity have been linked with insulin resistance and type 2 diabetes (T2D). The mechanisms that lead to the profound production of IL-8 in obesity remains to be understood. TNF-α and saturated free fatty acids (FFAs) are increased in obese humans and correlate with insulin resistance. Hence, we sought to investigate whether the cooccurrence of TNF-α and FFAs led to increase the production of IL-8 by human monocytes. We found that co-stimulation of human monocytes with palmitate and TNF-α led to increased IL-8 production as compared to those stimulated with palmitate or TNF-α alone. The synergistic production of IL-8 by TNF-α/palmitate was suppressed by neutralizing anti- Toll like receptor 4 (TLR4) antibody and by genetic silencing of TLR4. Both MyD88-deficient and MyD88-competent cells responded comparably to TNF-α/Palmitate. However, TIR-domain-containing adapter-inducing interferon (TRIF) inhibition or interferon regulatory transcription factor 3 (IRF3) knockdown partly blocked the synergistic production of IL-8. Our human data show that increased adipose tissue TNF-α expression correlated positively with IL-8 expression (r = 0.49, P = 0.001). IL-8 and TNF-α correlated positively with macrophage markers including CD68, CD163 and CD86 in adipose tissue. These findings suggest that the signaling cross-talk between saturated fatty acid palmitate and TNF-α may be a key driver in obesity-associated chronic inflammation via an excessive production of IL-8.


Assuntos
Inflamação/metabolismo , Interleucina-8/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Palmitatos/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Linhagem Celular , Humanos , Pessoa de Meia-Idade , Sobrepeso/metabolismo , Transdução de Sinais
9.
Cell Physiol Biochem ; 45(2): 572-590, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29428931

RESUMO

BACKGROUND/AIMS: Metabolic diseases such as obesity and type-2 diabetes (T2D) are known to be associated with chronic low-grade inflammation called metabolic inflammation together with an oxidative stress milieu found in the expanding adipose tissue. The innate immune Toll-like receptors (TLR) such as TLR2 and TLR4 have emerged as key players in metabolic inflammation; nonetheless, TLR10 expression in the adipose tissue and its significance in obesity/T2D remain unclear. METHODS: TLR10 gene expression was determined in the adipose tissue samples from healthy non-diabetic and T2D individuals, 13 each, using real-time RT-PCR. TLR10 protein expression was determined by immunohistochemistry, confocal microscopy, and flow cytometry. Regarding in vitro studies, THP-1 cells, peripheral blood mononuclear cells (PBMC), or primary monocytes were treated with hydrogen peroxide (H2O2) for induction of reactive oxygen species (ROS)-mediated oxidative stress. Superoxide dismutase (SOD) activity was measured using a commercial kit. Data (mean±SEM) were compared using unpaired student's t-test and P<0.05 was considered significant. RESULTS: The adipose tissue TLR10 gene/protein expression was found to be significantly upregulated in obesity as well as T2D which correlated with body mass index (BMI). ROS-mediated oxidative stress induced high levels of TLR10 gene/protein expression in monocytic cells and PBMC. In these cells, oxidative stress induced a time-dependent increase in SOD activity. Pre-treatment of cells with anti-oxidants/ROS scavengers diminished the expression of TLR10. ROS-induced TLR10 expression involved the nuclear factor-kappaB (NF-κB)/mitogen activated protein kinase (MAPK) signaling as well as endoplasmic reticulum (ER) stress. H2O2-induced oxidative stress interacted synergistically with palmitate to trigger the expression of TLR10 which associated with enhanced expression of proinflammatory cytokines/chemokine. CONCLUSION: Oxidative stress induces the expression of TLR10 which may represent an immune marker for metabolic inflammation.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Obesidade/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Receptor 10 Toll-Like/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Idoso , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Peróxido de Hidrogênio/toxicidade , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptor 10 Toll-Like/metabolismo
10.
Cell Physiol Biochem ; 39(3): 889-900, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27497609

RESUMO

BACKGROUND/AIMS: Obese individuals are known to have increased Matrix metalloproteinase (MMP)-9 plasma levels and MMP-9 is reported to play an important role in obesity-associated adipose tissue inflammation. Since in obesity, the levels of circulatory saturated free fatty acid (FFA) palmitate (palimitic acid) are increased and modulate the expression of inflammatory mediators, the role of palmitate in the regulation of MMP-9 remains unclear. METHODS: Human monocytic cell line THP-1 and primary monocytes were stimulated with palmitate and TNF-α (positive control). MMP-9 expression was assessed with real time RT-PCR and ELISA. Signaling pathways were studied by using THP-1-XBlue™ cells, THP-1-XBlue™-defMyD cells, anti-TLR4 mAb and TLR4 siRNA. Phosphorylation of NF-kB and c-Jun was analyzed by Western blotting. RESULTS: Here, we provide the evidence that palmitate induces MMP-9 expression at both mRNA (THP-1: 6.8 ± 1.2 Fold; P = 0.01; Primary monocytes: 5.9 ± 0.7 Fold; P = 0.0003) and protein (THP1: 1116 ±14 pg/ml; P<0.001; Primary monocytes: 1426 ± 13.8; P = 0.0005) levels in human monocytic cells. Palmitate-induced MMP-9 secretion was markedly suppressed by neutralizing anti-TLR-4 antibody (P < 0.05). Furthermore, genetic silencing of TLR4 by siRNA also significantly abrogated the palmitate-induced up-regulation of MMP-9. Additionally, MyD88-/- THP-1 cells did not express MMP-9 in response to palmitate treatment. Increased NF-κB/AP-1 activity (P<0.05) was also observed in palmitate-treated THP-1 cells. CONCLUSION: Altogether, these results show that palmitate induces TLR4-dependent activation of MMP-9 gene expression, which requires the recruitment of MyD88 leading to activation of NF-kB/AP-1 transcription factors. Thus, our findings suggest that the palmitate-induced MMP-9 secretion might be an underlying mechanism of its increased levels in obesity and related metabolic inflammation.


Assuntos
Metaloproteinase 9 da Matriz/genética , Monócitos/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/genética , Ácido Palmítico/farmacologia , Receptor 4 Toll-Like/genética , Anticorpos Neutralizantes/farmacologia , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA