Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Assoc Physicians India ; 72(5): 89-90, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38881116

RESUMO

Large language models (LLMs) use autoregression to generate text in response to queries. Crafting an appropriate prompt to elicit the desired response from these generative artificial intelligence (AI) models to solve a clinical problem can be a challenge to clinicians who may be unfamiliar with this technology. The use of checklists to generate carefully worded queries can leverage the potential of LLMs as a brainstorming aid for medical problem-solving. Systematically using different prompts to generate the most appropriate differential diagnoses for selected clinical case scenarios, a potential checklist for prompt generation has been created and is reported here.


Assuntos
Inteligência Artificial , Lista de Checagem , Resolução de Problemas , Humanos , Diagnóstico Diferencial
2.
Angew Chem Int Ed Engl ; 62(5): e202213927, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36316280

RESUMO

As a consequence of rapid industrialization throughout the world, various environmental pollutants have begun to accumulate in water, air, and soil. This endangers the ecological environment of the earth, and environmental remediation has become an immediate priority. Among various environmental remediation techniques, piezocatalytic techniques, which uniquely take advantage of the piezoelectric effect, have attracted much attention. Piezoelectric effects allow pollutant degradation directly, while also enhancing photocatalysis by reducing the recombination of photogenerated carriers. In this Review, we provide a comprehensive summary of recent developments in piezocatalytic techniques for environmental remediation. The origin of the piezoelectric effect as well as classification of piezoelectric materials and their application in environmental remediation are systematically summarized. We also analyze the potential underlying mechanisms. Finally, urgent problems and the future development of piezocatalytic techniques are discussed.

3.
Small ; 18(17): e2200730, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35324078

RESUMO

Atomically dispersed CoNC is a promising material for H2 O2 selective electrosynthesis via a two-electron oxygen reduction reaction. However, the performance of typical CoNC materials with routine CoN4 active center is insufficient and needs to be improved further. This can be done by fine-tuning its atomic coordination configuration. Here, a single-atom electrocatalyst (Co/NC) is reported that comprises a specifically penta-coordinated CoNC configuration (OCoN2 C2 ) with Co center coordinated by two nitrogen atoms, two carbon atoms, and one oxygen atom. Using a combination of theoretical predictions and experiments, it is confirmed that the unique atomic structure slightly increases the charge state of the cobalt center. This optimizes the adsorption energy towards *OOH intermediate, and therefore favors the two-electron ORR relevant for H2 O2 electrosynthesis. In neutral solution, the as-synthesized Co/NC exhibits a selectivity of over 90% over a potential ranging from 0.36 to 0.8 V, with a turnover frequency value of 11.48 s-1 ; thus outperforming the state-of-the-art carbon-based catalysts.

4.
Nanotechnology ; 33(40)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35334476

RESUMO

Surface modification by employing precious metals is one of the most effective ways to improve the gas-sensing performance of metal oxide semiconductors. Pureα-Fe2O3nanoparticles and Pt-modifiedα-Fe2O3nanoparticles were prepared sequentially using a rather simple hydrothermal synthesis and impregnation method. Compared with the originalα-Fe2O3nanomaterials, the Pt-α-Fe2O3nanocomposite sensor shows a higher response value (Ra/Rg = 58.6) and a shorter response/recovery time (1 s/168 s) to 100 ppm dimethyl disulfide (DMDS) gas at 375 °C. In addition, it has better selectivity to DMDS gas with the value of more than 9 times higher than the other target gases at 375 °C. This study indicates that the Pt-α-Fe2O3nanoparticle sensor has good prospects and can be used as a low-cost and effective DMDS gas sensor.

5.
Phys Chem Chem Phys ; 24(2): 771-777, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34908054

RESUMO

Significant efforts have been directed towards the use of transition metal nitrides as electrocatalysts for the hydrogen evolution reaction (HER). Molybdenum nitride, despite its potential for scalable production, suffers from the bottleneck of poor catalytic activity. Furthermore the kinetics of the water dissociation process ought to be improved for enhancing its potential. Here, we report a facile method for the incorporation of a trace amount of Pd nanoparticles into Mo3N2 nanobelts (0.75 Pd/Mo3N2) for an enhanced HER in both acidic and alkaline solutions. When employed for the HER, the 0.75 wt% Pd/Mo3N2 nanobelt delivers excellent catalytic activity with overpotentials of 45 and 65 mV in 0.5 M H2SO4 and 1 M KOH at a current density of 10 mA cm-2. As-prepared 0.75 wt% Pd/Mo3N2 displays a smaller Tafel slope and offers substantial stability in both acidic and alkaline media under the same operating conditions. The improved performance of the as-prepared 0.75 wt% Pd/Mo3N2 points to fast charge transfer, higher electrical conductivity and synergistic effects between Pd and Mo. This work displays a direct method for reducing the use and cost associated with the use of platinum-group metals while also delivering superior HER catalytic performance.

6.
Nat Mater ; 19(3): 282-286, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31740792

RESUMO

Platinum (Pt)-based materials are important components of microelectronic sensors, anticancer drugs, automotive catalytic converters and electrochemical energy conversion devices1. Pt is currently the most common catalyst used for the oxygen reduction reaction (ORR) in devices such as fuel cells and metal-air batteries2,3, although a scalable use is restricted by the scarcity, cost and vulnerability to poisoning of Pt (refs 4-6). Here we show that nanoparticulate zirconium nitride (ZrN) can replace and even surpass Pt as a catalyst for ORR in alkaline environments. As-synthesized ZrN nanoparticles (NPs) exhibit a high oxygen reduction performance with the same activity as that of a widely used Pt-on-carbon (Pt/C) commercial catalyst. Both materials show the same half-wave potential (E1/2 = 0.80 V) and ZrN has a higher stability (ΔE1/2 = -3 mV) than the Pt/C catalyst (ΔE1/2 = -39 mV) after 1,000 ORR cycles in 0.1 M KOH. ZrN is also shown to deliver a greater power density and cyclability than Pt/C in a zinc-air battery. Replacement of Pt by ZrN is likely to reduce costs and promote the usage of electrochemical energy devices, and ZrN may also be useful in other catalytic systems.

7.
Angew Chem Int Ed Engl ; 60(12): 6561-6566, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33354797

RESUMO

Semiconducting metal oxides (SMOXs) are used widely for gas sensors. However, the effect of ambient humidity on the baseline and sensitivity of the chemiresistors is still a largely unsolved problem, reducing sensor accuracy and causing complications for sensor calibrations. Presented here is a general strategy to overcome water-sensitivity issues by coating SMOXs with a hydrophobic polymer separated by a metal-organic framework (MOF) layer that preserves the SMOX surface and serves a gas-selective function. Sensor devices using these nanoparticles display near-constant responses even when humidity is varied across a wide range [0-90 % relative humidity (RH)]. Furthermore, the sensor delivers notable performance below 20 % RH whereas other water-resistance strategies typically fail. Selectivity enhancement and humidity-independent sensitivity are concomitantly achieved using this approach. The reported tandem coating strategy is expected to be relevant for a wide range of SMOXs, leading to a new generation of gas sensors with excellent humidity-resistant performance.

8.
Nanotechnology ; 31(16): 165708, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31899912

RESUMO

Fe-N-C catalyst obtained by high temperature pyrolysis is one of the most promising electrocatalysts for non-precious metal oxygen reduction reaction (ORR). However, up to now, the lesser density of active sites results in a substantial performance gap between the Fe-N-C materials and the conventional Pt/C ORR catalysts. Herein, an N-doped mesoporous carbon is employed as the support for the dispersion of poly-m-phenylenediamine. With high specific surface areas of 1526 m2 g-1, the as-prepared Fe-N-C materials show the half-wave potential of 0.89 V and 0.79 V in 0.1 M KOH and 0.5 M H2SO4, respectively. Notably, the superior methanol tolerance, as well as excellent stability, makes our Fe-N-C materials as competitive candidates for oxygen electrochemical catalysis.

9.
Angew Chem Int Ed Engl ; 59(41): 18036-18041, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32608085

RESUMO

The oxygen evolution reaction (OER) is key to renewable energy technologies such as water electrolysis and metal-air batteries. However, the multiple steps associated with proton-coupled electron transfer result in sluggish OER kinetics and catalysts are required. Here we demonstrate that a novel nitride, Ni2 Mo3 N, is a highly active OER catalyst that outperforms the benchmark material RuO2 . Ni2 Mo3 N exhibits a current density of 10 mA cm-2 at a nominal overpotential of 270 mV in 0.1 m KOH with outstanding catalytic cyclability and durability. Structural characterization and computational studies reveal that the excellent activity stems from the formation of a surface-oxide-rich activation layer (SOAL). Secondary Mo atoms on the surface act as electron pumps that stabilize oxygen-containing species and facilitate the continuity of the reactions. This discovery will stimulate the further development of ternary nitrides with oxide surface layers as efficient OER catalysts for electrochemical energy devices.

10.
Anal Chem ; 91(5): 3533-3538, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30712342

RESUMO

Strategies for simultaneous detection and detoxification of Hg2+ using a single sensor from biological and environmental samples are limited and have not been realized in living organisms so far. We report a highly selective, small molecule "turn-on" fluorescent sensor, PYDMSA, based on the cationic dye Pyronin Y (PY) and chelating agent meso-2,3-dimercaptosuccinic acid (DMSA) for the simultaneous detection and detoxification of inorganic mercury (Hg2+). After Hg2+ detection, concomitant detoxification was carried out with sufficient efficacy in living samples, which makes the sensor unique. PYDMSA exhibits high selectivity for Hg2+ over other competing metal ions with an experimental detection limit of ∼300 pM in aqueous buffer solution. When PYDMSA reacts with Hg2+, the CS-C9 bond in the sensor gets cleaved. This results in the "turn-on" response of the fluorescence probe with a concomitant release of one equivalent of water-soluble Hg2+-DMSA complex which leads to a synchronous detoxifying effect. The sensor by itself is nontoxic to cells in culture and has been used to monitor the real-time uptake of Hg2+ in live cells and zebrafish larvae. Thus, PYDMSA is a unique sensor which can be used to detect and detoxify mercury at the same time in living samples.


Assuntos
Corantes Fluorescentes/química , Mercúrio/análise , Pironina/química , Succímero/química , Animais , Células Cultivadas , Embrião não Mamífero , Células HEK293 , Humanos , Estrutura Molecular , Espectrometria de Fluorescência , Peixe-Zebra
11.
Org Biomol Chem ; 17(42): 9367-9374, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31621741

RESUMO

The reaction of ß-hydroxyethylation is essential to the current practice of organic chemistry. Here, we proposed a new and green route to synthesize 2-hydroxyethyl n-alkyl sulfide with n-alkyl mercaptan and ethylene carbonate (EC) in the presence of alkali carbonates as catalysts and revealed the mechanism by experiments and theoretical calculations. The reaction reported proceeds rapidly with high yields when it is performed at 120 °C and the catalytic loading is ∼1 mol%. This protocol is applicable to other mercaptans to synthesize the corresponding ß-hydroxyethyl sulfide. Density functional theory-based calculations show the energy profile for the reaction pathway. The rate-determining step is the ring-opening of EC. A negatively charged O atom of alkali carbonates approaches the S atom of -SH under the influence of hydrogen bonds. An activated S atom that carries more negative charge serves as a nucleophilic reagent and assists in the ring-opening of EC by reducing the Mayer bond orders of the C1-O1 bond in EC. Alkali cations also contribute to the C1-O1 bond cleavage. The energy barrier for the ring-opening of EC decreases with the decrease of electronegativity of alkali cations. Subsequent transference of a H atom leads to the formation of ß-hydroxyethyl sulfide, the dissociation of CO2 and the reduction of K2CO3.

12.
Phys Chem Chem Phys ; 18(42): 29447-29457, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27738691

RESUMO

Red light emitting cubic Zr0.99Eu0.01O2:Li+ (0-9 mol%) nanoparticles are synthesized by a low temperature, self-propagating solution combustion method using oxalyl di-hydrazide (ODH) as fuel. In this study, we report systematic investigation of the effect of lithium ion (Li+) concentration on the structural properties and the photoluminescence of zirconia. With increasing lithium concentration, the crystallinity of the samples increases and the lattice strain decreases. The higher crystallinity is likely due to charge compensation achieved by replacing one Zr4+ ion by a Eu3+ and a Li+ ion. Scanning electron micrographs (SEM) reveal a mesoporous structure characteristic of combustion derived nanomaterials. Photoluminescence (PL) spectra show that the intensity of the red emission (606 nm) is highly dependent on Li+ ion concentration. Furthermore there is a promising enhancement in the associated lifetime. Upon Li+ doping, the PL intensity of the samples is found to increase by two fold compared to the undoped sample. Variation of PL intensity with Li+ concentration is attributed to the differences in probability of non-radiative recombination (relaxing). Intensity parameters (Ω2, Ω) and radiative properties such as transition rates (A), branching ratios (ß), stimulated emission cross-section (σe), gain bandwidth (σe × Δλeff) and optical gain (σe × τ) are calculated using the Judd-Ofelt theory. The calculated values suggest that in optimally co-doped samples, in addition to improved crystallinity and charge compensation, the lowering of Eu3+ site symmetry and the increase in the covalency of Eu-O bonding due to interstitial Li are responsible for the observed enhancement in PL intensity.

13.
J Mol Model ; 30(8): 244, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958769

RESUMO

CONTEXT: Phosphite esters, a class of organo-phosphorus compounds, are widely used as non-discolouring antioxidants in many polymeric products. Apart from normal radical scavenging, they prevent the splitting of hydroperoxides (ROOH), one of the initial products of autoxidation, from forming extremely reactive free radicals such as alkoxy (RO.) and hydroxy (.OH) radicals. The inherent molecular properties of antioxidants and the chemistry of their action are essential for researchers working in this field of science. Four organo-phosphorous compounds well-known for their antioxidant activity are selected here for theoretical analysis: Tri(m-methylphenyl) phosphite (m-TMPP), Tri(4-methyl-2,6-di-tert-butylphenyl) phosphite (TMdtBPP), Tri(allylphenyl) phosphite (TAPP) and Tri(mercaptobenzothiazoyl) thiophosphate (TMBTTP). The antioxidant activity exhibited by these compounds is theoretically verified, and the results are consistent with the available experimental data. Such theoretical predictions offer advantages in scientific research, particularly when researchers need to select certain molecules as antioxidants for experiments from a pool of molecular systems. METHODS: The chemical computations presented in this report are done in Gaussian 16 program package. The procedure of density functional theory (DFT) with the model chemistry B3LYP/6-31G(d,p) is used to generate computational data. Global reactivity indices, thermochemical data, Fukui functions, molecular electrostatic potential and NMR spectra are computed for the chosen molecular systems from their optimized geometries.

14.
J Mol Model ; 29(5): 167, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126124

RESUMO

Iron is one of the essential metals required by almost all living organisms. However, nature has certain constraints in distributing this element among tissues. Since polymeric oxide-bridged Fe (III) is the prominent source of Fe (III) ions, the insolubility of Fe (III) ions in aqueous systems reduces the direct uptake by cells. Secondly, the free-Fe entities which generate .OH radicals pave the way to the destruction of the cells. Hence, a protective coordination environment via sophisticated chemical systems is required for the acquisition of Fe, its successive transport, storage, and effective utilization in various tissues. Siderophores are polydentate ligands used by bacterial cells for Fe acquisition, with a relatively high affinity for Fe (III) ions. Secreted from the bacterial cells into the external aqueous medium, they sequester Fe to give a soluble complex which re-enters the organism at a specific receptor. Once it gets inside the cell, the Fe is released from the complex and utilized for essential biochemical reactions. The medicinal applications of these natural ligands, developing progressively in various research groups, necessitate the theoretical aspects of their coordination chemistry. This research paper deals with the coordination chemistry of one of the siderophores, cepabactin (Cep). The chemical computations confirm that the FeIII(Cep)3 complex is octahedral and high spin. The oxygen atoms of Cep, which are hard and negatively charged, thus act as electron donors in the FeIII(Cep)3 complex formation. This in turn makes the siderophores relatively less attractive towards Fe (II) ions.


Assuntos
Compostos Férricos , Sideróforos , Sideróforos/química , Compostos Férricos/química , Ferro/química , Piridonas , Bactérias , Ligantes
15.
Environ Sci Pollut Res Int ; 30(14): 39605-39617, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36598720

RESUMO

Present work puts forward an efficient strategy to degrade one of the persistent antibiotic contaminants, ciprofloxacin (CIP). Hybrid advanced oxidation process (HAOP) is tailored with a synergy effect between photocatalysis and photo-Fenton catalysis on zinc ferrite-titania heterostructured composite (ZFO-TiO2). The ZFO-TiO2 heterostructured composite enables heterogenous surfaces for enhanced charge separation where HAOP is implemented for CIP degradation with the aid of class AAA solar simulator. The results reveal an enhanced degradation rate of CIP (kobs = 0.255 min-1), noticeably higher than the conventional TiO2-based photocatalysis. The HAOP system strongly enhances the reaction rates showing five times higher performance as compared to TiO2-based photocatalysis. The substitution reactions for degradation of CIP into its intermediates were analyzed by LC-MS/MS, and the plausible degradation pathways have been graphically modeled identifying 3-phenyl-1-propanol and phenol molecules as less toxic end products. Toxicity of the photodegraded samples reveal 18.1 ± 1.24% inhibition of V. fischeri at the end of 60-min treatment indicating reduced toxicity of CIP contaminated samples. Antimicrobial inhibition studies on E. coli also corroborate an effective CIP removal (~ 100%) in less than 90 min. The study puts forward a novel ZFO-TiO2 composite HAOP system for efficient and rapid mineralization of an antibiotic pollutant, extendable towards wide range of pharmaceutical drug degradation studies.


Assuntos
Antibacterianos , Ciprofloxacina , Cromatografia Líquida , Zinco , Escherichia coli , Espectrometria de Massas em Tandem , Preparações Farmacêuticas , Catálise , Peróxido de Hidrogênio
16.
Micromachines (Basel) ; 13(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36144008

RESUMO

The extensive use of organophosphates (OPs) pollutes the environment, leading to serious health hazards for human beings. The current need is to fabricate a sensing platform that will be sensitive and selective towards the detection of OPs at trace levels in the nM to fM range. With this discussed in the present report, an ultra-sensitive immunosensing platform is developed using digestive-ripened copper oxide quantum dots grafted on a gold microelectrode (Au-µE) for the impedimetric detection of parathion (PT). The copper oxide quantum dots utilized in this study were of ultra-small size with a radius of approximately 2 to 3 nm and were monodispersed with readily available functional groups for the potential immobilization of antibody parathion (Anti-PT). The miniaturization is achieved by the utilization of Au-µE and the microfluidic platform utilized has the sample holding capacity of about 2 to 10 µL. The developed immunosensor provided a wide linear range of detection from 1 µM to 1 fM. The lower Limit of Detection (LoD) for the developed sensing platform was calculated to be 0.69 fM, with the sensitivity calculated to be 0.14 kΩ/nM/mm2. The stability of the sensor was found to be ~40 days with good selectivity. The developed sensor has the potential to integrate with a portable device for field applications.

17.
J Hazard Mater ; 423(Pt B): 127193, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844341

RESUMO

Efficient, accurate and reliable detection and monitoring of H2S is of significance in a wide range of areas: industrial production, medical diagnosis, environmental monitoring, and health screening. However the rapid corrosion of commercial platinum-on-carbon (Pt/C) sensing electrodes in the presence of H2S presents a fundamental challenge for fuel cell gas sensors. Herein we report a solution to the issue through the design of a sensing electrode, which is based on Pt supported on mesoporous titanium chromium nitrides (Pt/Ti0.5Cr0.5N). Its desirable characteristics are due to its high electrochemical stability and strong metal-support interactions. The Pt/Ti0.5Cr0.5N-based sensors exhibit a much smaller attenuation (1.3%) in response to H2S than Pt/C-sensor (40%), after 2 months sensing test. Furthermore, the Pt/Ti0.5Cr0.5N-based sensors exhibit negligible cross response to other interfering gases compared with hydrogen sulfide. Results of density functional theory calculation also verify the excellent long-term stability and selectivity of the gas sensor. Our work hence points to a new sensing electrode system that offers a combination of high performance and stability for fuel-cell gas sensors.


Assuntos
Sulfeto de Hidrogênio , Platina , Eletrodos , Gases , Titânio
18.
Sci Rep ; 12(1): 5111, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332159

RESUMO

Visible-light-driven photo-fenton-like catalytic activity and photoelectrochemical (PEC) performance of nitrogen-doped brownmillerite KBiFe2O5 (KBFO) are investigated. The effective optical bandgap of KBFO reduces from 1.67 to 1.60 eV post N-doping, enabling both enhancement of visible light absorption and photoactivity. The photo-fenton activity of KBFO and N-doped KBFO samples were analysed by degrading effluents like Methylene Blue (MB), Bisphenol-A (BPA) and antibiotics such as Norfloxacin (NOX) and Doxycycline (DOX). 20 mmol of Nitrogen-doped KBFO (20N-KBFO) exhibits enhanced catalytic activity while degrading MB. 20N-KBFO sample is further tested for degradation of Bisphenol-A and antibiotics in the presence of H2O2 and chelating agent L-cysteine. Under optimum conditions, MB, BPA, and NOX, and DOX are degraded by 99.5% (0.042 min-1), 83% (0.016 min-1), 72% (0.011 min-1) and 95% (0.026 min-1) of its initial concentration respectively. Photocurrent density of 20N-KBFO improves to 8.83 mA/cm2 from 4.31 mA/cm2 for pure KBFO. Photocatalytic and photoelectrochemical (PEC) properties of N-doped KBFO make it a promising candidate for energy and environmental applications.


Assuntos
Peróxido de Hidrogênio , Nitrogênio , Antibacterianos , Catálise , Luz , Azul de Metileno , Nitrogênio/química
19.
Dalton Trans ; 51(18): 7127-7134, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35466976

RESUMO

A dual-phase transition metal nitride (TMN) based Co4N-WNx system has been fabricated using nitridation of CoWO4. The interface between centrosymmetric Co4N and non-centrosymmetric WNx promotes charge carrier separation. This system also shows piezoelectric behavior. The piezoelectric property has been proved using piezoelectric force microscopy (PFM) measurements. In addition, modulating the non-centrosymmetric structure of Co4N-WNx allows a hydrogen production rate of about 262.7 µmol g-1 h-1 in pure water. We also show that the piezocatalytic hydrogen evolution efficiency is satisfactory. Co4N-WNx can also help achieve simultaneous piezocatalytic hydrogen production and RhB degradation. This work provides a novel strategy for designing efficient piezocatalytic materials.

20.
BMJ Open Qual ; 11(3)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35788052

RESUMO

BACKGROUND: At present, there are no validated quantitative scales available to measure patient-centred quality of care in health facilities providing services for tuberculosis (TB) patients in India and low-income and middle-income countries. METHODS: Initial themes and items reflective of TB patient's perceived quality of care were developed using qualitative interviews. Content adequacy of the items were ascertained through Content validity Index (CVI) and content validity ratio (CVR). Pilot testing of the questionnaire for assessing validity and reliability was undertaken among 714 patients with TB. Sampling adequacy and sphericity were tested by Kaiser-Meyer-Olkin and Bartlett's test, respectively. Exploratory and confirmatory factor analysis was undertaken to test validity. Cronbach's α and test-retest scores were used to test reliability. RESULTS: A 32-item tool measuring patient-perceived quality of TB distributed across five domains was developed initially based on a CVI and CVR cut-off score of 0.78 and cognitive interviews with patients with TB. Bartlett's test results showed a strong significance f (χ2=3756 and p<0.001) and Kaiser-Meyer-Olkin was measured to be 0.698 highlighting data adequacy and correlation between the variables. Exploratory factor analysis with varimax rotation extracted 4 factors related to 14 items with Eigen values >1 which accounted for 60.9% of the total variance of items. Correlation (z-value >1.96) between items and factors was highly significant and Cronbach's α was acceptable for the global scale (0.76) for the four factors. Intraclass correlation coefficient and the test retest scores for four factors were (<0.001) significant. CONCLUSION: We validated a measurement tool for patient-perceived quality of care for TB (PPQCTB) which measured the patient's satisfaction with healthcare provider and services. PPQCTB tool could enrich quality of care evaluation frameworks for TB health services in India.


Assuntos
Tuberculose , Instalações de Saúde , Humanos , Índia , Pobreza , Reprodutibilidade dos Testes , Tuberculose/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA