Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 20(2): 464-471, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34913461

RESUMO

Recently, the GlyConnect-oxime (GC) protein conjugation strategy was developed to provide a site-selective glycan-based conjugation strategy as an extension to the in-house developed GlycoDelete (GD) technology. GD gives access to glycoproteins with single GlcNAc, LacNAc, or LacNAc-Sia type glycans on their N-glycosylation sites. We have previously shown that these glycans provide a unique handle for site-selective conjugation as they provide a short, homogeneous and hydrophilic link to the protein backbone. GC focused on the use of chemical and chemo-enzymatic pathways for conjugation of a single molecule of interest via oxime formation or reductive amination. In the current work, we explore multicomponent reactions (MCR), namely Ugi and Passerini reactions, for GlycoDelete glycan directed, site-specific protein conjugation (MC-GC). The use of the Ugi and Passerini multicomponent reactions holds the potential of introducing multiple groups of interest in a single reaction step while creating a hydrophilic peptide-like linker.

2.
MAbs ; 15(1): 2210709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37211816

RESUMO

As small and stable high-affinity antigen binders, VHHs boast attractive characteristics both for therapeutic use in various disease indications, and as versatile reagents in research and diagnostics. To further increase the versatility of VHHs, we explored the VHH scaffold in a structure-guided approach to select regions where the introduction of an N-glycosylation N-X-T sequon and its associated glycan should not interfere with protein folding or epitope recognition. We expressed variants of such glycoengineered VHHs in the Pichia pastoris GlycoSwitchM5 strain, allowing us to pinpoint preferred sites at which Man5GlcNAc2-glycans can be introduced at high site occupancy without affecting antigen binding. A VHH carrying predominantly a Man5GlcNAc2 N-glycan at one of these preferred sites showed highly efficient, glycan-dependent uptake by Mf4/4 macrophages in vitro and by alveolar lung macrophages in vivo, illustrating one potential application of glyco-engineered VHHs: a glycan-based targeting approach for lung macrophage endolysosomal system delivery. The set of optimal artificial VHH N-glycosylation sites identified in this study can serve as a blueprint for targeted glyco-engineering of other VHHs, enabling site-specific functionalization through the rapidly expanding toolbox of synthetic glycobiology.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Antígenos , Epitopos , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA