RESUMO
We have synthesized and structurally characterized three tetra-(p-tolyl)antimony(III)-containing heteropolytungstates, [{(p-tolyl)SbIII}4(A-α-XW9O34)2]n- [X = PV (1-P), AsV (1-As), or GeIV (1-Ge)], in aqueous solution using conventional, one-pot procedures. The polyanions 1-P, 1-As, and 1-Ge were fully characterized in the solid state and in solution and were shown to be soluble and stable in aqueous medium at pH 7. Biological studies demonstrated that all three polyanions possess significant antibacterial and antitumor activities. The minimum inhibitory concentrations of 1-P, 1-As, and 1-Ge were determined against four kinds of bacteria, including the two pathogenic bacteria strains, Vibrio parahaemolyticus and Vibrio vulnificus. The three novel polyanions also showed high cytotoxic potency in the human cell lines A549 (non-small cell lung cancer), CH1/PA-1 (ovarian teratocarcinoma), and SW480 (colon carcinoma).
Assuntos
Antibacterianos/farmacologia , Antimônio/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Tungstênio/farmacologia , Células A549 , Antibacterianos/síntese química , Antibacterianos/química , Antimônio/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Células Tumorais Cultivadas , Tungstênio/química , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio vulnificus/efeitos dos fármacosRESUMO
We previously positionally cloned Sorcs1 as a diabetes quantitative trait locus. Sorcs1 belongs to the Vacuolar protein sorting-10 (Vps10) gene family. In yeast, Vps10 transports enzymes from the trans-Golgi network (TGN) to the vacuole. Whole-body Sorcs1 KO mice, when made obese with the leptin(ob) mutation (ob/ob), developed diabetes. ß Cells from these mice had a severe deficiency of secretory granules (SGs) and insulin. Interestingly, a single secretagogue challenge failed to consistently elicit an insulin secretory dysfunction. However, multiple challenges of the Sorcs1 KO ob/ob islets consistently revealed an insulin secretion defect. The luminal domain of SORCS1 (Lum-Sorcs1), when expressed in a ß cell line, acted as a dominant-negative, leading to SG and insulin deficiency. Using syncollin-dsRed5TIMER adenovirus, we found that the loss of Sorcs1 function greatly impairs the rapid replenishment of SGs following secretagogue challenge. Chronic exposure of islets from lean Sorcs1 KO mice to high glucose and palmitate depleted insulin content and evoked an insulin secretion defect. Thus, in metabolically stressed mice, Sorcs1 is important for SG replenishment, and under chronic challenge by insulin secretagogues, loss of Sorcs1 leads to diabetes. Overexpression of full-length SORCS1 led to a 2-fold increase in SG content, suggesting that SORCS1 is sufficient to promote SG biogenesis.