RESUMO
OBJECTIVES: The timing of tracheostomy for critically ill patients on mechanical ventilation (MV) is a topic of controversy. Our objective was to determine the most suitable timing for tracheostomy in patients undergoing MV. DESIGN: Retrospective cohort study. SETTING AND PARTICIPANTS: One thousand eight hundred eighty-four hospitalisations received tracheostomy from January 2011 to December 2020 in a Chinese tertiary hospital. METHODS: Tracheostomy timing was divided into three groups: early tracheostomy (ET), intermediate tracheostomy (IMT), and late tracheostomy (LT), based on the duration from tracheal intubation to tracheostomy. We established two criteria to classify the timing of tracheostomy for data analysis: Criteria I (ET ≤ 5 days, 5 days < IMT ≤ 10 days, LT > 10 days) and Criteria II (ET ≤ 7 days, 7 days < IMT ≤ 14 days, LT > 14 days). Parameters such as length of ICU stay, length of hospital stay, and duration of MV were used to evaluate outcomes. Additionally, the outcomes were categorized as good prognosis, poor prognosis, and death based on the manner of hospital discharge. Student's t-test, analysis of variance (ANOVA), Mann-Whitney U test, Kruskal-Wallis test, Chi-square test, and Fisher's exact test were employed as appropriate to assess differences in demographic data and individual characteristics among the ET, IMT, and LT groups. Univariate Cox regression model and multivariable Cox proportional hazards regression model were utilized to determine whether delaying tracheostomy would increase the risk of death. RESULTS: In both of two criterion, patients with delayed tracheostomies had longer hospital stays (p < 0.001), ICU stays (p < 0.001), total time receiving MV (p < 0.001), time receiving MV before tracheostomy (p < 0.001), time receiving MV after tracheostomy (p < 0.001), and sedation durations. Similar results were also found in sub-population diagnosed as trauma, neurogenic or digestive disorders. Multinomial Logistic regression identified LT was independently associated with poor prognosis, whereas ET conferred no clinical benefits compared with IMT. CONCLUSIONS: In a mixed ICU population, delayed tracheostomy prolonged ICU and hospital stays, sedation durations, and time receiving MV. Multinomial logistic regression analysis identified delayed tracheostomies as independently correlated with worse outcomes. TRIAL REGISTRATION: ChiCTR2100043905. Registered 05 March 2021. http://www.chictr.org.cn/listbycreater.aspx.
Assuntos
Respiração Artificial , Traqueostomia , Humanos , Estado Terminal , Estudos Retrospectivos , Centros de Atenção Terciária , ChinaRESUMO
BACKGROUND: The role of video laryngoscopy in critically ill patients requiring emergency tracheal intubation remains controversial. This systematic review and meta-analysis aimed to evaluate whether video laryngoscopy could improve the clinical outcomes of emergency tracheal intubation. METHODS: We searched the PubMed, Embase, Scopus and Cochrane databases up to 5 September 2024. Randomised controlled trials comparing video laryngoscopy with direct laryngoscopy for emergency tracheal intubation were analysed. The primary outcome was the first-attempt success rate, while secondary outcomes included intubation time, glottic visualisation, in-hospital mortality and complications. RESULTS: Twenty-six studies (6 in prehospital settings and 20 in hospital settings) involving 5952 patients were analysed in this study. Fifteen studies had low risk of bias. Overall, there was no significant difference in first-attempt success rate between two groups (RR 1.05, 95% CI 0.97 to 1.13, p=0.24, I2=89%). However, video laryngoscopy was associated with a higher first-attempt success rate in hospital settings (emergency department: RR 1.13, 95% CI 1.03 to 1.23, p=0.007, I2=85%; intensive care unit: RR 1.16, 95% CI 1.05 to 1.29, p=0.003, I2=68%) and among inexperienced operators (RR 1.15, 95% CI 1.03 to 1.28, p=0.01, I2=72%). Conversely, the first-attempt success rate with video laryngoscopy was lower in prehospital settings (RR 0.75, 95% CI 0.57 to 0.99, p=0.04, I2=95%). There were no differences for other outcomes except for better glottic visualisation (RR 1.11, 95% CI 1.03 to 1.20, p=0.005, I2=91%) and a lower incidence of oesophageal intubation (RR 0.42, 95% CI 0.24 to 0.71, p=0.001, I2=0%) when using video laryngoscopy. CONCLUSIONS: In hospital settings, video laryngoscopy improved first-attempt success rate of emergency intubation, provided superior glottic visualisation and reduced incidence of oesophageal intubation in critically ill patients. Our findings support the routine use of video laryngoscopy in the emergency department and intensive care units. PROSPERO REGISTRATION NUMBER: CRD 42023461887.
RESUMO
Acute respiratory distress syndrome (ARDS) threatens the survival of critically ill patients, the mechanisms of which are still unclear. Neutrophil extracellular traps (NETs) released by activated neutrophils play a critical role in inflammatory injury. We investigated the role of NETs and the underlying mechanism involved in acute lung injury (ALI). We found a higher expression of NETs and cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) in the airways, which was reduced by Deoxyribonuclease I (DNase I) in ALI. The administration of the STING inhibitor H-151 also significantly relieved inflammatory lung injury, but failed to affect the high expression of NETs in ALI. We isolated murine neutrophils from bone marrow and acquired human neutrophils by inducing HL-60 to differentiate. After the PMA interventions, exogenous NETs were obtained from such extracted neutrophils. Exogenous NETs intervention in vitro and in vivo resulted in airway injury, and such inflammatory lung injury was reversed upon degrading NETs with or inhibiting cGAS-STING with H-151 as well as siRNA STING. In conclusion, cGAS-STING participates in regulating NETs-mediated inflammatory pulmonary injury, which is expected to be a new therapeutic target for ARDS/ALI.
Assuntos
Lesão Pulmonar Aguda , Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Armadilhas Extracelulares/metabolismo , Lesão Pulmonar Aguda/metabolismo , Neutrófilos/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismoRESUMO
PURPOSE: The purpose of this study was to explore the clinical features, risk factors, and outcomes of mixed Candida albicans/bacterial bloodstream infections (mixed-CA/B-BSIs) compared with monomicrobial Candida albicans bloodstream infection (mono-CA-BSI) in adult patients in China. METHODS: All hospitalized adults with Candida albicans bloodstream infection (CA-BSI) were recruited for this retrospective observational study from January 1, 2013, to December 31, 2018. RESULTS: Of the 117 patients with CA-BSI, 24 patients (20.5%) had mixed-CA/B-BSIs. The most common copathogens were coagulase-negative Staphylococcus (CNS) (24.0%), followed by Klebsiella pneumoniae (20.0%) and Staphylococcus aureus (16.0%). In the multivariable analysis, a prior ICU stay > 2 days (adjusted odds ratio [OR], 7.445; 95% confidence interval [CI], 1.152-48.132) was an independent risk factor for mixed-CA/B-BSIs. Compared with patients with mono-CA-BSI, patients with mixed-CA/B-BSIs had a prolonged length of mechanical ventilation [17.5 (4.5, 34.8) vs. 3.0 (0.0, 24.5), p = 0.019] and prolonged length of ICU stay [22.0 (14.3, 42.2) vs. 8.0 (0.0, 31.5), p = 0.010]; however, mortality was not significantly different. CONCLUSIONS: There was a high rate of mixed-CA/B-BSIs cases among CA-BSI cases, and CNS was the predominant coexisting species. A prior ICU stay > 2 days was an independent risk factor for mixed -CA/B-BSIs. Although there was no difference in mortality, the outcomes of patients with mixed -CA/B-BSIs, including prolonged length of mechanical ventilation and prolonged length of ICU stay, were worse than those with mono-CA-BSI; this deserves further attention from clinicians.
Assuntos
Bacteriemia/complicações , Candida albicans/isolamento & purificação , Candidíase/complicações , Infecções por Klebsiella/complicações , Klebsiella pneumoniae/isolamento & purificação , Infecções Estafilocócicas/complicações , Staphylococcus aureus/isolamento & purificação , Idoso , Bacteriemia/microbiologia , Bacteriemia/mortalidade , Candidíase/microbiologia , Candidíase/mortalidade , China/epidemiologia , Infecção Hospitalar/microbiologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/mortalidade , Masculino , Pessoa de Meia-Idade , Respiração Artificial/efeitos adversos , Estudos Retrospectivos , Fatores de Risco , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/mortalidadeRESUMO
Azithromycin is a potential therapeutic choice for asthma control, which is a heterogeneous airway inflammatory disease. Because of variable findings, we intend to evaluate the therapeutic effect and safety of azithromycin in asthma. Databases, including PubMed, EMBASE, Cochrane, and CNKI until 31 December 2017, were searched to identify available randomised controlled trials regarding azithromycin treatment for asthma. We identified seven studies involving 1520 cases that met our criteria. The mean difference for lung function (FEV1 , FVC, PEF), symptom assessment (ACQ, AQLQ), airway inflammation, and risk ratios for adverse events were extracted. Chi-square and I2 tests were applied to evaluate the heterogeneity among the studies towards each index with a random effect model or a fixed effect model. Pooled analysis shows that azithromycin administration results in no significant improvement in FEV1 (MD: 0.09, 95% CI -0.10 to 0.29, P = 0.36), PEF (MD: 11.76; 95% CI, -2.86 to 26.38, P = 0.11), total airway inflammatory cells (MD: -0.29; 95% CI, -1.38 to 0.80, P = 0.60), ACQ (MD: 0.05; 95% CI, -0.08 to 0.19, P = 0.44), and AQLQ (MD: 0.12; 95% CI, -0.02 to 0.26, P = 0.10). Moreover, no significant difference was detected in adverse events (Risk ratio 0.99; 95% CI, 0.82-1.19, P = 0.90). These findings demonstrate no beneficial clinical outcome of azithromycin in asthma control, and we propose that further prospective cohorts are warranted.
Assuntos
Antibacterianos/uso terapêutico , Asma/tratamento farmacológico , Azitromicina/uso terapêutico , Qualidade de Vida , Humanos , PrognósticoRESUMO
Tissue factor (TF)-dependent coagulation contributes to lung inflammation and the pathogenesis of acute lung injury (ALI). In this study, we explored the roles of targeted endothelial anticoagulation in ALI using two strains of transgenic mice expressing either a membrane-tethered human tissue factor pathway inhibitor (hTFPI) or hirudin fusion protein on CD31+ cells, including vascular endothelial cells (ECs). ALI was induced by intratracheal injection of LPS, and after 24 h the expression of TF and protease-activated receptors (PARs) on EC in lungs were assessed, alongside the extent of inflammation and injury. The expression of TF and PARs on the EC in lungs was upregulated after ALI. In the two strains of transgenic mice, expression of either of hTFPI or hirudin by EC was associated with significant reduction of inflammation, as assessed by the extent of leukocyte infiltration or the levels of proinflammatory cytokines, and promoted survival after LPS-induced ALI. The beneficial outcomes were associated with inhibition of the expression of chemokine CCL2 in lung tissues. The protection observed in the CD31-TFPI-transgenic strain was abolished by injection of an anti-hTFPI antibody, but not by prior engraftment of the transgenic strains with WT bone marrow, confirming that the changes observed were a specific transgenic expression of anticoagulants by EC. These results demonstrate that the inflammation in ALI is TF and thrombin dependent, and that expression of anticoagulants by EC significantly inhibits the development of ALI via repression of leukocyte infiltration, most likely via inhibition of chemokine gradients. These data enhance our understanding of the pathology of ALI and suggest a novel therapeutic strategy for treatment.
Assuntos
Lesão Pulmonar Aguda/metabolismo , Células Endoteliais/metabolismo , Hirudinas/metabolismo , Inflamação/metabolismo , Lipoproteínas/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Coagulação Sanguínea/fisiologia , Quimiocinas/metabolismo , Quimiotaxia de Leucócito/fisiologia , Hirudinas/genética , Humanos , Inflamação/induzido quimicamente , Sanguessugas/química , Lipopolissacarídeos , Lipoproteínas/genética , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Pseudomonas aeruginosa/química , Receptores Ativados por Proteinase/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismoRESUMO
CONTEXT: Benralizumab is a humanized monoclonal antibody that targets the α chain of the IL-5 receptor (IL-5Rα) and is currently being assessed in clinical trials for asthma control. OBJECTIVE: Our systematic review and meta-analysis intends to evaluate the therapeutic efficacy and safety of benralizumab in patients with eosinophilic asthma. DATA SOURCES AND EXTRACTION: Literature searches of PubMed, Embase, and the Cochrane Library were performed to identify randomized controlled trials of benralizumab and clinic outcomes in asthmatics. RESULTS: In total, 7 articles with 2,321 subjects met our inclusion criteria. From this pooled analysis, we found that benralizumab significantly reduces exacerbations (RR: 0.63, 95% CI: 0.52-0.76, p < 0.00001; I2 = 52%, p = 0.06) compared to placebo in eosinophilic asthma. There was no statistical trend for improvement in forced expiratory volume in 1 second or asthma control indices such as Quality of Life Assessment (AQLQ) and Asthma Control Questionnaire score in benralizumab-treated patients. In addition, safety data indicated that benralizumab administration resulted no increasing incidence of adverse events and was well tolerated (RR: 1.00, 95% CI: 0.95-1.05, p = 0.96; I2 = 40%, p = 0.13). CONCLUSION: These results demonstrate the efficacy and safety of benralizumab for asthma patients with severe or uncontrolled symptoms and elevated eosinophils and provide support for benralizumab as an ideal option to treat asthma in this patient population.
Assuntos
Antiasmáticos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Asma/tratamento farmacológico , Eosinofilia/tratamento farmacológico , Eosinófilos , Asma/sangue , Asma/imunologia , Eosinofilia/sangue , Eosinofilia/imunologia , Humanos , Contagem de Leucócitos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do TratamentoRESUMO
BACKGROUND: Asthmatic inflammation is dominated by accumulation of either eosinophils, neutrophils, or both in the airways. Disposal of these inflammatory cells is the key to disease control. Eosinophilic airway inflammation is responsive to corticosteroid treatment, whereas neutrophilic inflammation is resistant and increases the burden of global health care. Corticosteroid-resistant neutrophilic asthma remains mechanistically poorly understood and requires novel effective therapeutic strategies. OBJECTIVE: We sought to explore the underlying mechanisms of airway inflammation persistence, as well as corticosteroid resistance, and to investigate a new strategy of effective treatment against corticosteroid-insensitive neutrophilic asthma. METHODS: Mouse models of either eosinophil-dominated or neutrophil-dominated airway inflammation were used in this study to test corticosteroid sensitivity in vivo and in vitro. We also used vav-Bcl-2 transgenic mice to confirm the importance of granulocytes apoptosis in the clearance of airway inflammation. Finally, the Bcl-2 inhibitors ABT-737 or ABT-199 were tested for their therapeutic effects against eosinophilic or neutrophilic airway inflammation and airway hyperresponsiveness. RESULTS: Overexpression of Bcl-2 protein was found to be responsible for persistence of granulocytes in bronchoalveolar lavage fluid after allergic challenge. This was important because allergen-induced airway inflammation aggravated and persisted in vav-Bcl-2 transgenic mice, in which nucleated hematopoietic cells were overexpressed with Bcl-2 and resistant to apoptosis. The Bcl-2 inhibitors ABT-737 or ABT-199 play efficient roles in alleviation of either eosinophilic or corticosteroid-resistant neutrophilic airway inflammation by inducing apoptosis of immune cells, such as eosinophils, neutrophils, TH2 cells, TH17 cells, and dendritic cells. Moreover, these inhibitors were found to be more efficient than steroids to induce granulocyte apoptosis ex vivo from patients with severe asthma. CONCLUSION: Apoptosis of inflammatory cells is essential for clearance of allergen-induced airway inflammation. The Bcl-2 inhibitors ABT-737 or ABT-199 might be promising drugs for the treatment of airway inflammation, especially for corticosteroid-insensitive neutrophilic airway inflammation.
Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Compostos de Bifenilo/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Nitrofenóis/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Alérgenos/imunologia , Compostos de Alúmen , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Asma/imunologia , Asma/metabolismo , Compostos de Bifenilo/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Resistência a Medicamentos/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Adjuvante de Freund/imunologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Nitrofenóis/farmacologia , Ovalbumina/imunologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/farmacologiaRESUMO
IL-17 is known to play important roles in immune and inflammatory disease, such as in asthma, but its functions in allergic airway inflammation are still controversial, and the molecular mechanisms mediating these functions remain unclear. Increased production of eosinophils in bone marrow and their emergence in the airway have been linked to the onset and progression of allergic asthma. In this study, we investigated the effects of exogenous IL-17 on allergic airway inflammation and explored the underlying molecular mechanisms through eosinophil generation. Exogenous IL-17 significantly attenuated the features of allergic inflammation induced by ovalbumin in mice. It inhibited eosinophil differentiation both in vivo and in vitro, accompanied by down-regulated expression of CC chemokine receptor 3, GATA binding protein 1 (GATA-1), and GATA binding protein 2 (GATA-2), as well as reduced formation of common myeloid progenitors and eosinophil progenitors, but without influencing eosinophil apoptosis. IL-17 also significantly decreased the number of eosinophils in IL-5-transgenic mice, although it notably increased the levels of IL-3, IL-5, and granulocyte/macrophage colony-stimulating factor. In addition, IL-17 had little effect on secretion of the inflammatory cytokines by eosinophils. Neutralization of endogenous IL-17 significantly augmented eosinophil recruitment in the airways. Together, these findings suggest that exogenous IL-17 protects against allergic airway inflammation, most likely through inhibition of the eosinophil differentiation in bone marrow.
Assuntos
Anti-Inflamatórios/farmacologia , Asma/imunologia , Diferenciação Celular/efeitos dos fármacos , Eosinófilos/fisiologia , Interleucina-17/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Células da Medula Óssea/fisiologia , Sobrevivência Celular , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Eosinófilos/efeitos dos fármacos , Feminino , Interleucina-17/uso terapêutico , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
BACKGROUND AND OBJECTIVE: The mammalian target of rapamycin (mTOR) signalling pathway regulates immune responses, and promotes cell growth and differentiation. Inhibition of mTOR with rapamycin modulates allergic asthma, while the underlying molecular mechanisms remain elusive. Here, we demonstrate that rapamycin, effectively inhibits eosinophil differentiation, contributing to its overall protective role in allergic airway inflammation. METHODS: Rapamycin was administered in a mouse model of ovalbumin-induced allergic airway inflammation, and the eosinophil differentiation was analysed in vivo and in vitro. RESULTS: Rapamycin significantly attenuated allergic airway inflammation and markedly decreased the amount of eosinophils in local airways, peripheral blood and bone marrow, independently of levels of interleukin-5 (IL-5). In vitro colony forming unit assay and liquid culture demonstrated that rapamycin directly inhibited IL-5-induced eosinophil differentiation. In addition, rapamycin reduced the production of IL-6 and IL-13 by eosinophils. Rapamycin was also capable of reducing the eosinophil levels in IL-5 transgenic NJ.1638 mice, again regardless of the constitutive high levels of IL-5. Interestingly, rapamycin inhibition of eosinophil differentiation in turn resulted in an accumulation of eosinophil lineage-committed progenitors in bone marrow. CONCLUSIONS: Altogether these results clearly demonstrate a direct inhibitory role of rapamycin in eosinophil differentiation and function, and reemphasize the importance of rapamycin and possibly, mTOR, in allergic airway disease.
Assuntos
Asma , Diferenciação Celular , Eosinófilos , Inflamação , Sirolimo/farmacologia , Animais , Asma/tratamento farmacológico , Asma/imunologia , Asma/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Hipersensibilidade/imunologia , Imunossupressores/farmacologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Interleucinas/imunologia , Contagem de Leucócitos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Ovalbumina/farmacologia , Inibidores de Serina Proteinase/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/imunologiaRESUMO
Background: Acute Respiratory Distress Syndrome (ARDS) or its earlier stage Acute lung injury (ALI), is a worldwide health concern that jeopardizes human well-being. Currently, the treatment strategies to mitigate the incidence and mortality of ARDS are severely restricted. This limitation can be attributed, at least in part, to the substantial variations in immunity observed in individuals with this syndrome. Methods: Bulk and single cell RNA sequencing from ALI mice and single cell RNA sequencing from ARDS patients were analyzed. We utilized the Seurat program package in R and cellmarker 2.0 to cluster and annotate the data. The differential, enrichment, protein interaction, and cell-cell communication analysis were conducted. Results: The mice with ALI caused by pulmonary and extrapulmonary factors demonstrated differential expression including Clec4e, Retnlg, S100a9, Coro1a, and Lars2. We have determined that inflammatory factors have a greater significance in extrapulmonary ALI, while multiple pathways collaborate in the development of pulmonary ALI. Clustering analysis revealed significant heterogeneity in the relative abundance of immune cells in different ALI models. The autocrine action of neutrophils plays a crucial role in pulmonary ALI. Additionally, there was a significant increase in signaling intensity between B cells and M1 macrophages, NKT cells and M1 macrophages in extrapulmonary ALI. The CXCL, CSF3 and MIF, TGFß signaling pathways play a vital role in pulmonary and extrapulmonary ALI, respectively. Moreover, the analysis of human single-cell revealed DCs signaling to monocytes and neutrophils in COVID-19-associated ARDS is stronger compared to sepsis-related ARDS. In sepsis-related ARDS, CD8+ T and Th cells exhibit more prominent signaling to B-cell nucleated DCs. Meanwhile, both MIF and CXCL signaling pathways are specific to sepsis-related ARDS. Conclusion: This study has identified specific gene signatures and signaling pathways in animal models and human samples that facilitate the interaction between immune cells, which could be targeted therapeutically in ARDS patients of various etiologies.
Assuntos
Lesão Pulmonar Aguda , Comunicação Celular , Perfilação da Expressão Gênica , Animais , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Camundongos , Humanos , Comunicação Celular/imunologia , Transcriptoma , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/genética , Modelos Animais de Doenças , Análise de Célula Única , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , COVID-19/imunologia , COVID-19/genética , Transdução de Sinais , Masculino , Macrófagos/imunologia , Macrófagos/metabolismoRESUMO
BACKGROUND: Astragali radix Antiasthmatic Decoction (AAD), a traditional Chinese medication, is found effective in treating allergic diseases and chronic cough. The purpose of this study is to determine whether this medication could suppress allergen-induced airway hyperresponsiveness (AHR) and remodeling in mice, and its possible mechanisms. METHODS: A mouse model of chronic asthma was used to investigate the effects of AAD on the airway lesions. Mice were sensitized and challenged with ovalbumin (OVA), and the extent of AHR and airway remodeling were characterized. Cells and cytokines in the bronchoalveolar lavage fluid (BALF) were examined. RESULTS: AAD treatment effectively decreased OVA-induced AHR, eosinophilic airway inflammation, and collagen deposition around the airway. It significantly reduced the levels of IL-13 and TGF-ß1, but exerted inconsiderable effect on INF-γ and IL-10. CONCLUSIONS: AAD greatly improves the symptoms of allergic airway remodeling probably through inhibition of Th2 cytokines and TGF-ß1.
Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Antiasmáticos/administração & dosagem , Asma/imunologia , Asma/prevenção & controle , Astrágalo/química , Medicamentos de Ervas Chinesas/administração & dosagem , Sistema Respiratório/imunologia , Animais , Asma/tratamento farmacológico , Asma/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-10/imunologia , Interleucina-13/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sistema Respiratório/fisiopatologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Fator de Crescimento Transformador beta1/imunologiaRESUMO
Neutrophil extracellular traps (NETs) are essential for immune defense and have been increasingly recognized for their role in infection and inflammation. In the context of airway inflammatory diseases, there is growing evidence suggesting the involvement and significance of NETs. This review aims to provide an overview of the formation mechanisms and components of NETs and their impact on various airway inflammatory diseases, including acute lung injury/ARDS, asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. By understanding the role of NETs in airway inflammation, we can gain valuable insights into the underlying pathogenesis of these diseases and identify potential targets for future therapeutic strategies that either target NETs formation or modulate their harmful effects. Further research is warranted to elucidate the complex interactions between NETs and airway inflammation and to develop targeted therapies that can effectively mitigate their detrimental effects while preserving their beneficial functions in host defense.
RESUMO
Background: High-quality evidence for whether the use of renin-angiotensin-aldosterone system (RAAS) inhibitors worsens clinical outcomes for patients with coronavirus disease 2019 (COVID-19) is lacking. The present study aimed to evaluate the effect of RAAS inhibitors on disease severity and mortality in patients with hypertension and COVID-19 using randomized controlled trials (RCTs) and propensity score-matched (PSM) studies. Methods: A literature search was conducted with PubMed, Embase, and Scopus databases from 31 December 2019 to 10 January 2022. We included RCTs and PSM studies comparing the risk of severe illness or mortality in patients with hypertension and COVID-19 treated or not treated with RAAS inhibitors. Individual trial data were combined to estimate the pooled odds ratio (OR) with a random-effects model. Results: A total of 17 studies (4 RCTs and 13 PSM studies) were included in the meta-analysis. The use of RAAS inhibitors was not associated with an increased risk of severe illness (OR=1.00, 95% confidence interval [CI]: 0.88-1.14, I2=28%) or mortality (OR=0.96, 95% CI: 0.83-1.11, I2=16%) for patients with hypertension and COVID-19. Furthermore, there was no significant difference in the severity of COVID-19 when patients continued or discontinued treatment with RAAS inhibitors (OR=1.01, 95% CI: 0.78-1.29, I2=0%). Conclusions: This study suggests that there was no association between treatment with RAAS inhibitors and worsened COVID-19 disease outcomes. Our findings support the current guidelines that RAAS inhibitors should be continued in the setting of the COVID-19 pandemic. However, the benefit of RAAS inhibitor medications for COVID-19 patients should be further validated with more RCTs.
RESUMO
Background: The prognostic value of the national early warning score (NEWS) in patients with infections remains controversial. We aimed to evaluate the prognostic accuracy of NEWS for prediction of in-hospital mortality in patients with infections outside the intensive care unit (ICU). Methods: We searched PubMed, Embase, and Scopus for related articles from January 2012 to April 2021. Sensitivity, specificity, and likelihood ratios were pooled by using the bivariate random-effects model. Overall prognostic performance was summarized by using the area under the curve (AUC). We performed subgroup analyses to assess the prognostic accuracy of NEWS in selected populations. Results: A total of 21 studies with 107,008 participants were included. The pooled sensitivity and specificity of NEWS were 0.71 and 0.60. The pooled AUC of NEWS was 0.70, which was similar to quick sequential organ failure assessment (qSOFA, AUC: 0.70) and better than systemic inflammatory response syndrome (SIRS, AUC: 0.60). However, the sensitivity (0.55) and AUC (0.63) of NEWS were poor in elder patients. The NEWS of 5 was more sensitive, which was a better threshold for activating urgent assessment and treatment. Conclusions: The NEWS had good diagnostic accuracy for early prediction of mortality in patients with infections outside the ICU, and the sensitivity and specificity were more moderate when compared with qSOFA and SIRS. Insufficient sensitivity and poor performance in the elder population may have limitations as an early warning score for adverse outcomes. NEWS should be used for continuous monitoring rather than a single time point predictive tool.
RESUMO
Background: During the coronavirus disease 2019 (COVID-19) pandemic, the National Early Warning Score 2 (NEWS2) is recommended for the risk stratification of COVID-19 patients, but little is known about its ability to detect severe cases. Therefore, our purpose is to assess the prognostic accuracy of NEWS2 on predicting clinical deterioration for patients with COVID-19. Methods: We searched PubMed, Embase, Scopus, and the Cochrane Library from December 2019 to March 2021. Clinical deterioration was defined as the need for intensive respiratory support, admission to the intensive care unit, or in-hospital death. Sensitivity, specificity, and likelihood ratios were pooled by using the bivariate random-effects model. Overall prognostic performance was summarized by using the area under the curve (AUC). We performed subgroup analyses to assess the prognostic accuracy of NEWS2 in different conditions. Results: Eighteen studies with 6,922 participants were included. The NEWS2 of five or more was commonly used for predicting clinical deterioration. The pooled sensitivity, specificity, and AUC were 0.82, 0.67, and 0.82, respectively. Benefitting from adding a new SpO2 scoring scale for patients with hypercapnic respiratory failure, the NEWS2 showed better sensitivity (0.82 vs. 0.75) and discrimination (0.82 vs. 0.76) than the original NEWS. In addition, the NEWS2 was a sensitive method (sensitivity: 0.88) for predicting short-term deterioration within 72 h. Conclusions: The NEWS2 had moderate sensitivity and specificity in predicting the deterioration of patients with COVID-19. Our results support the use of NEWS2 monitoring as a sensitive method to initially assess COVID-19 patients at hospital admission, although it has a relatively high false-trigger rate. Our findings indicated that the development of enhanced or modified NEWS may be necessary.
RESUMO
BACKGROUND: Probiotic treatments might contribute to the prevention of ventilator-associated pneumonia (VAP). Due to its unclear clinical effects, here we intend to assess the preventive effect and safety of probiotics on intensive care unit (ICU) patients. METHODS: Eligible randomised controlled trials were selected in databases until 30 September 2019. The characteristics of the studies were extracted, including study design, definition of VAP, probiotics intervention, category of included patients, incidence of VAP, mortality, duration of mechanical ventilation (MV) and ICU stay. Heterogeneity was evaluated by Chi-squared and I2 tests. RESULTS: 15 studies involving 2039 patients were identified for analysis. The pooled analysis suggests significant reduction on VAP (risk ratio, 0.68; 95% Cl, 0.60 to 0.77; p<0.00001) in a fixed-effects model. Subgroup analyses performed on the category of clinical and microbiological criteria both support the above conclusion; however, there were no significant differences in duration of MV or length of ICU stay in a random-effects model. Also, no significant differences in total mortality, overall mortality, 28-day mortality or 90-day mortality were found in the fixed-effects model. CONCLUSIONS: The probiotics helped to prevent VAP without impacting the duration of MV, length of ICU stay or mortality.
RESUMO
(1) Background: Chronic inflammation has been regarded as a risk factor for the onset and progression of human cancer, but the critical molecular mechanisms underlying this pathological process have yet to be elucidated. (2) Methods: In this study, we investigated whether interleukin (IL)-17-mediated inflammation was involved in cigarette smoke-induced genomic instability. (3) Results: Higher levels of both IL-17 and the DNA damage response (DDR) were found in the lung tissues of smokers than in those of non-smokers. Similarly, elevated levels of IL-17 and the DDR were observed in mice after cigarette smoke exposure, and a positive correlation was observed between IL-17 expression and the DDR. In line with these observations, the DDR in the mouse lung was diminished in IL-17 KO when exposed to cigarette smoke. Besides this, the treatment of human bronchial epithelium cells with IL-17 led to increased levels of the DDR and chromosome breakage. (4) Conclusions: These results suggest that cigarette smoke induces genomic instability at least partially through IL-17-mediated inflammation, implying that IL-17 could play an important role in the development of lung cancer.
Assuntos
Genoma Humano/efeitos dos fármacos , Inflamação/induzido quimicamente , Interleucina-17/metabolismo , Fumar/efeitos adversos , Produtos do Tabaco/efeitos adversos , Animais , Brônquios/citologia , Células Cultivadas , Dano ao DNA , Células Epiteliais/citologia , Instabilidade Genômica , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , FumaçaRESUMO
Background: The attributable mortality and microbial etiology of stroke-associated pneumonia (SAP) vary among different studies and were inconsistent. Purpose: To determine the microbiology and outcomes of SAP in the lower respiratory tract (LRT) for patients with invasive mechanical ventilation (MV). Methods: In this observational study, included patients were divided into SAP and non-SAP based on a comprehensive analysis of symptom, imaging, and laboratory results. Baseline characteristics, clinical characteristics, microbiology, and outcomes were recorded and evaluated. Results: Of 200 patients, 42.5% developed SAP after the onset of stroke, and they had a lower proportion of non-smokers (p = 0.002), lower GCS score (p < 0.001), higher serum CRP (p < 0.001) at ICU admission, and a higher proportion of males (p < 0.001) and hypertension (p = 0.039) than patients with non-SAP. Gram-negative aerobic bacilli were the predominant organisms isolated (78.8%), followed by Gram-positive aerobic cocci (29.4%). The main pathogens included K. pneumoniae, S. aureus, H. influenzae, A. baumannii, P. aeruginosa, E. aerogenes, Serratia marcescens, and Burkholderia cepacia. SAP prolonged length of MV (p < 0.001), duration of ICU stay (p < 0.001) and hospital stay (p = 0.027), shortened MV-free days by 28 (p < 0.001), and caused elevated vasopressor application (p = 0.001) and 60-day mortality (p = 0.001). Logistic regression analysis suggested that patients with coma (p < 0.001) have a higher risk of developing SAP. Conclusion: The microbiology of SAP is similar to early phase of HAP and VAP. SAP prolongs the duration of MV and length of ICU and hospital stays, but also markedly increases 60-day mortality.