Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(14): 4141-4149, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38536947

RESUMO

Recently, van der Waals (vdW) antiferromagnets have been proposed to be crucial for spintronics due to their favorable properties compared to ferromagnets, including robustness against magnetic perturbation and high frequencies of spin dynamics. High-performance and energy-efficient spin functionalities often depend on the current-driven manipulation and detection of spin states, highlighting the significance of two-dimensional metallic antiferromagnets, which have not been much explored due to the lack of suitable materials. Here, we report a new metallic vdW antiferromagnet obtained from the ferromagnet Fe3GaTe2 by cobalt (Co) doping. Through the layer-number-dependent Hall resistance and magnetoresistance measurements, an evident odd-even layer-number effect has been observed in its few-layered flakes, suggesting that it could host an A-type antiferromagnetic structure. This peculiar layer-number-dependent magnetism in Co-doped Fe3GaTe2 helps unravel the complex magnetic structures in such doped vdW magnets, and our finding will enrich material candidates and spin functionalities for spintronic applications.

2.
Nano Lett ; 24(5): 1587-1593, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38259044

RESUMO

Magnetic skyrmions in bulk materials are typically regarded as two-dimensional structures. However, they also exhibit three-dimensional configurations, known as skyrmion tubes, that elongate and extend in-depth. Understanding the configurations and stabilization mechanism of skyrmion tubes is crucial for the development of advanced spintronic devices. However, the generation and annihilation of skyrmion tubes in confined geometries are still rarely reported. Here, we present direct imaging of skyrmion tubes in nanostructured cuboids of a chiral magnet FeGe using Lorentz transmission electron microscopy (TEM), while applying an in-plane magnetic field. It is observed that skyrmion tubes stabilize in a narrow field-temperature region near the Curie temperature (Tc). Through a field cooling process, metastable skyrmion tubes can exist in a larger region of the field-temperature diagram. Combining these experimental findings with micromagnetic simulations, we attribute these phenomena to energy differences and thermal fluctuations. Our results could promote topological spintronic devices based on skyrmion tubes.

3.
Nano Lett ; 24(14): 4158-4164, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557108

RESUMO

As a quasi-layered ferrimagnetic material, Mn3Si2Te6 nanoflakes exhibit magnetoresistance behavior that is fundamentally different from their bulk crystal counterparts. They offer three key properties crucial for spintronics. First, at least 106 times faster response compared to that exhibited by bulk crystals has been observed in current-controlled resistance and magnetoresistance. Second, ultralow current density is required for resistance modulation (∼5 A/cm2). Third, electrically gate-tunable magnetoresistance has been realized. Theoretical calculations reveal that the unique magnetoresistance behavior in the Mn3Si2Te6 nanoflakes arises from a magnetic field induced band gap shift across the Fermi level. The rapid current induced resistance variation is attributed to spin-orbit torque, an intrinsically ultrafast process (∼nanoseconds). This study suggests promising avenues for spintronic applications. In addition, it highlights Mn3Si2Te6 nanoflakes as a suitable platform for investigating the intriguing physics underlying chiral orbital moments, magnetic field induced band variation, and spin torque.

4.
Nano Lett ; 24(20): 5984-5992, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728101

RESUMO

Addressing the need for modulated spin configurations is crucial, as they serve as the foundational building blocks for next-generation spintronics, particularly in atomically thin structures and at room temperature. In this work, we realize intrinsic ferromagnetism in monolayer flakes and tunable ferro-/antiferromagnetism in (Fe0.56Co0.44)5GeTe2 antiferromagnets. Remarkably, the ferromagnetic ordering (≥1 L) and antiferromagnetic ordering (≥4 L) remain discernible up to room temperature. The TC (∼310 K) of the monolayer flakes sets a record high for known exfoliated monolayer van der Waals magnets. Within the framework of A-type antiferromagnetism, a notable odd-even layer-number effect at elevated temperatures (T = 150 K) is observed. Of particular interest is the strong ferromagnetic order in even-layer flakes at low temperatures. The intricate interplay among magnetic field strength, layer number, and temperature gives rise to a diverse array of phenomena, holding promise not only for new physics but also for practical applications.

5.
Nano Lett ; 23(22): 10205-10212, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37942916

RESUMO

Target skyrmion, characterized by a central skyrmion surrounded by a series of concentric cylinder domains known as kπ-skyrmions (k ≥ 2), holds promise as a novel storage state in next-generation memories. However, target skyrmions comprising one or more concentric cylindrical domains have not been observed in chiral magnets, particularly at room temperature. In this study, we experimentally achieved kπ-skyrmions (k = 2, 3, and 4) with diameters of ∼220, 320, and 410 nm, respectively, and room-temperature stability under zero magnetic field by tightly confining these topological spin textures in ß-Mn-type Co8Zn10Mn2 nanodisks. The magnetic configurations and their field-driven evolutions were simultaneously investigated by using in situ off-axis electron holography. In combination with numerical simulations, we further investigated the dependence of kmax on the nanodisk diameter. These findings highlight the potential of kπ-skyrmions as information carriers and offer insights into manipulation of kπ-skyrmions in the future.

6.
Phys Rev Lett ; 131(16): 166703, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925723

RESUMO

Finding tunable van der Waals (vdW) ferromagnets that operate at above room temperature is an important research focus in physics and materials science. Most vdW magnets are only intrinsically magnetic far below room temperature and magnetism with square-shaped hysteresis at room temperature has yet to be observed. Here, we report magnetism in a quasi-2D magnet Cr_{1.2}Te_{2} observed at room temperature (290 K). This magnetism was tuned via a protonic gate with an electron doping concentration up to 3.8×10^{21} cm^{-3}. We observed nonmonotonic evolutions in both coercivity and anomalous Hall resistivity. Under increased electron doping, the coercivities and anomalous Hall effects (AHEs) vanished, indicating a doping-induced magnetic phase transition. This occurred up to room temperature. DFT calculations showed the formation of an antiferromagnetic (AFM) phase caused by the intercalation of protons which induced significant electron doping in the Cr_{1.2}Te_{2}. The tunability of the magnetic properties and phase in room temperature magnetic vdW Cr_{1.2}Te_{2} is a significant step towards practical spintronic devices.

7.
Proc Natl Acad Sci U S A ; 117(13): 7090-7094, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179681

RESUMO

Electronic phase separation in complex oxides is the inhomogeneous spatial distribution of electronic phases, involving length scales much larger than those of structural defects or nonuniform distribution of chemical dopants. While experimental efforts focused on phase separation and established its correlation with nonlinear responses under external stimuli, it remains controversial whether phase separation requires quenched disorder for its realization. Early theory predicted that if perfectly "clean" samples could be grown, both phase separation and nonlinearities would be replaced by a bicritical-like phase diagram. Here, using a layer-by-layer superlattice growth technique we fabricate a fully chemically ordered "tricolor" manganite superlattice, and compare its properties with those of isovalent alloyed manganite films. Remarkably, the fully ordered manganite does not exhibit phase separation, while its presence is pronounced in the alloy. This suggests that chemical-doping-induced disorder is crucial to stabilize the potentially useful nonlinear responses of manganites, as theory predicted.

8.
Nano Lett ; 22(22): 8793-8800, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36331209

RESUMO

We report the current-induced creation of magnetic skyrmions in a chiral magnet FeGe nanostructure by using in situ Lorentz transmission electron microscopy. We show that magnetic skyrmions with controllable polarity can be transferred from the helical ground state simply by controlling the direction of the current flow at zero magnetic fields. The force analysis and symmetry consideration, backed up by micromagnetic simulations, well explain the experimental results, where magnetic skyrmions are created because of the edge instability of the helical state in the presence of spin-transfer torque. The on-demand generation of skyrmions and control of their polarity by electric current without the need for a magnetic field will enable novel purely electric-controlled skyrmion devices.

9.
Nano Lett ; 22(1): 73-80, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962398

RESUMO

The Berry curvature and orbital magnetic moment (OMM) come from either inversion symmetry or time-reversal symmetry breaking in quantum materials. Here, we demonstrate the significance of OMMs and Berry curvature in planar Hall effect (PHE) in antiferromagnetic topological insulator MnBi2Te4 flakes. We observe a PHE with period of π and positive magnitude at low fields, resembling the PHE of the surface states in nonmagnetic topological insulators. Remarkably, a novel predominant PHE with period of π/2 and negative magnitude emerges below the Néel temperature with B > 10 T. Our theoretical calculations reveal that this unusual π/2-periodic PHE originates from the topological OMMs of bulk Dirac electrons. Moreover, the competition between the contributions from the bulk and the surface states leads to nontrivial evolutions of PHE and anisotropic magnetoresistance. Our results reveal intriguing electromagnetic response due to the OMMs and also provide insight into the potential applications of magnetic topological insulators in spintronics.

10.
Nano Lett ; 22(24): 9839-9846, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36475695

RESUMO

Realization of ferromagnetism in the two-dimensional (2D) van der Waals (vdW) crystals opens up a vital route to understand the magnetic ordering in the 2D limit and to design novel spintronics. Here, we report enriched layer-number-dependent magnetotransport properties in the vdW ferromagnet Fe5GeTe2. By studying the magnetoresistance and anomalous Hall effect (AHE) in nanoflakes with thicknesses down to monolayer, we demonstrate that while the bulk crystals exhibit soft ferromagnetism with an in-plane magnetic anisotropy, hard ferromagnetism develops upon thinning, and a perpendicular easy-axis anisotropy is realized in bilayer flakes, which is accompanied by a pronounced enhancement of AHE because of extrinsic mechanisms. For the monolayer flakes, the hard ferromagnetism is replaced by spin-glass-like behavior, in accordance with the localization effect in the 2D limit. Our results highlight the thickness-based tunability of the magnetotransport properties in the atomically thin vdW magnets that promises engineering of high-performance spintronic devices.

11.
Nano Lett ; 22(15): 6166-6172, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35912475

RESUMO

Manipulating the exchange bias (EB) effect using an electronic gate is a significant goal in spintronics. The emergence of van der Waals (vdW) magnetic heterostructures has provided improved means to study interlayer magnetic coupling, but to date, these heterostructures have not exhibited electrical gate-controlled EB effects. Here, we report electrically controllable EB effects in a vdW heterostructure, FePS3-Fe5GeTe2. By applying a solid protonic gate, the EB effects were repeatably electrically tuned. The EB field reaches up to 23% of the coercivity and the blocking temperature ranges from 30 to 60 K under various gate-voltages. The proton intercalations not only tune the average magnetic exchange coupling but also change the antiferromagnetic configurations in the FePS3 layer. These result in a dramatic modulation of the total interface exchange coupling and the resultant EB effects. The study is a significant step toward vdW heterostructure-based magnetic logic for future low-energy electronics.

12.
Nano Lett ; 21(13): 5599-5605, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34152781

RESUMO

Magnetic van der Waals (vdW) materials are poised to enable all-electrical control of magnetism in the two-dimensional limit. However, tuning the magnetic ground state in vdW itinerant ferromagnets by voltage-induced charge doping remains a significant challenge, due to the extremely large carrier densities in these materials. Here, by cleaving the vdW itinerant ferromagnet Fe5GeTe2 (F5GT) into 5.4 nm (around two unit cells), we find that the ferromagnetism (FM) in F5GT can be substantially tuned by the thickness. Moreover, by utilizing a solid protonic gate, an electron doping concentration of above 1021 cm-3 has been exhibited in F5GT nanosheets. Such a high carrier accumulation exceeds that possible in widely used electric double-layer transistors (EDLTs) and surpasses the intrinsic carrier density of F5GT. Importantly, it is accompanied by a magnetic phase transition from FM to antiferromagnetism (AFM). The realization of an antiferromagnetic phase in nanosheet F5GT suggests the promise of applications in high-temperature antiferromagnetic vdW devices and heterostructures.

13.
Nano Lett ; 21(18): 7486-7494, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34460267

RESUMO

The metallic ground state in two-dimensional (2D) superconductors has attracted much attention but is still under intense scrutiny. Especially, the measurements in the ultralow temperature region are challenging for 2D superconductors due to the sensitivity to external perturbations. In this work, the resistance saturation induced by external noise, named as the "extrinsic anomalous metallic state", is observed in 2D transition metal dichalcogenide (TMD) superconductor 4Ha-TaSe2 nanodevices. However, with further decreasing temperature, credible evidence of the intrinsic anomalous metallic state is obtained by adequately filtering external radiation. Our work indicates that, at ultralow temperatures, the anomalous metallic state can be experimentally revealed as the quantum ground state in 2D crystalline TMD superconductors. Besides, Ising superconductivity revealed by ultrahigh in-plane critical field (Bc2∥) going beyond the Pauli paramagnetic limit (Bp) is detected in 4Ha-TaSe2, from the one-unit-cell device to the bulk situation, which might be due to the weak coupling between the TaSe2 submonolayers.

14.
Proc Natl Acad Sci U S A ; 115(38): 9503-9508, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30166451

RESUMO

Topological Weyl semimetals (TWSs) with pairs of Weyl points and topologically protected Fermi arc states have broadened the classification of topological phases and provide superior platform for study of topological superconductivity. Here we report the nontrivial superconductivity and topological features of sulfur-doped Td -phase MoTe2 with enhanced Tc compared with type-II TWS MoTe2 It is found that Td -phase S-doped MoTe2 (MoTe2-x S x , x ∼ 0.2) is a two-band s-wave bulk superconductor (∼0.13 meV and 0.26 meV), where the superconducting behavior can be explained by the s+- pairing model. Further, measurements of the quasi-particle interference (QPI) patterns and a comparison with band-structure calculations reveal the existence of Fermi arcs in MoTe2-x S x More interestingly, a relatively large superconducting gap (∼1.7 meV) is detected by scanning tunneling spectroscopy on the sample surface, showing a hint of topological nontrivial superconductivity based on the pairing of Fermi arc surface states. Our work demonstrates that the Td -phase MoTe2-x S x is not only a promising topological superconductor candidate but also a unique material for study of s+- superconductivity.

15.
Phys Rev Lett ; 125(4): 047202, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32794802

RESUMO

The weak interlayer coupling in van der Waals (vdW) magnets has confined their application to two dimensional (2D) spintronic devices. Here, we demonstrate that the interlayer coupling in a vdW magnet Fe_{3}GeTe_{2} (FGT) can be largely modulated by a protonic gate. With the increase of the protons intercalated among vdW layers, interlayer magnetic coupling increases. Because of the existence of antiferromagnetic layers in FGT nanoflakes, the increasing interlayer magnetic coupling induces exchange bias in protonated FGT nanoflakes. Most strikingly, a rarely seen zero-field cooled (ZFC) exchange bias with very large values (maximally up to 1.2 kOe) has been observed when higher positive voltages (V_{g}≥4.36 V) are applied to the protonic gate, which clearly demonstrates that a strong interlayer coupling is realized by proton intercalation. Such strong interlayer coupling will enable a wider range of applications for vdW magnets.

16.
Proc Natl Acad Sci U S A ; 113(18): 4918-23, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27051067

RESUMO

Magnetic skyrmion is a nanosized magnetic whirl with nontrivial topology, which is highly relevant for applications on future memory devices. To enable the applications, theoretical efforts have been made to understand the dynamics of individual skyrmions in magnetic nanostructures. However, directly imaging the evolution of highly geometrically confined individual skyrmions is challenging. Here, we report the magnetic field-driven dynamics of individual skyrmions in FeGe nanodisks with diameters on the order of several skyrmion sizes by using Lorentz transmission electron microscopy. In contrast to the conventional skyrmion lattice in bulk, a series of skyrmion cluster states with different geometrical configurations and the field-driven cascading phase transitions are identified at temperatures far below the magnetic transition temperature. Furthermore, a dynamics, namely the intermittent jumps between the neighboring skyrmion cluster states, is found at elevated temperatures, at which the thermal energy competes with the energy barrier between the skyrmion cluster states.

17.
Proc Natl Acad Sci U S A ; 113(11): 2904-9, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929327

RESUMO

As a new type of topological materials, ZrTe5 shows many exotic properties under extreme conditions. Using resistance and ac magnetic susceptibility measurements under high pressure, while the resistance anomaly near 128 K is completely suppressed at 6.2 GPa, a fully superconducting transition emerges. The superconducting transition temperature Tc increases with applied pressure, and reaches a maximum of 4.0 K at 14.6 GPa, followed by a slight drop but remaining almost constant value up to 68.5 GPa. At pressures above 21.2 GPa, a second superconducting phase with the maximum Tc of about 6.0 K appears and coexists with the original one to the maximum pressure studied in this work. In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopy combined with theoretical calculations indicate the observed two-stage superconducting behavior is correlated to the structural phase transition from ambient Cmcm phase to high-pressure C2/m phase around 6 GPa, and to a mixture of two high-pressure phases of C2/m and P-1 above 20 GPa. The combination of structure, transport measurement, and theoretical calculations enable a complete understanding of the emerging exotic properties in 3D topological materials under extreme environments.

18.
Phys Rev Lett ; 120(16): 167204, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29756913

RESUMO

Whereas theoretical investigations have revealed the significant influence of magnetic surface and edge states on Skyrmonic spin texture in chiral magnets, experimental studies of such chiral states remain elusive. Here, we study chiral edge states in an FeGe nanostripe experimentally using off-axis electron holography. Our results reveal the magnetic-field-driven formation of chiral edge states and their penetration lengths at 95 and 240 K. We determine values of saturation magnetization M_{S} by analyzing the projected in-plane magnetization distributions of helices and Skyrmions. Values of M_{S} inferred for Skyrmions are lower by a few percent than those for helices. We attribute this difference to the presence of chiral surface states, which are predicted theoretically in a three-dimensional Skyrmion model. Our experiments provide direct quantitative measurements of magnetic chiral boundary states and highlight the applicability of state-of-the-art electron holography for the study of complex spin textures in nanostructures.

19.
Phys Rev Lett ; 120(19): 197203, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29799255

RESUMO

We report direct evidence of the field-dependent character of the interaction between individual magnetic skyrmions as well as between skyrmions and edges in B20-type FeGe nanostripes observed by means of high-resolution Lorentz transmission electron microscopy. It is shown that above certain critical values of an external magnetic field the character of such long-range skyrmion interactions changes from attraction to repulsion. Experimentally measured equilibrium inter-skyrmion and skyrmion-edge distances as a function of the applied magnetic field shows quantitative agreement with the results of micromagnetic simulations. The important role of demagnetizing fields and the internal symmetry of three-dimensional magnetic skyrmions are discussed in detail.

20.
Nano Lett ; 17(5): 2921-2927, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28350960

RESUMO

The magnetic skyrmion is a topologically stable vortex-like spin texture that offers great promise as information carriers for future spintronic devices. In a two-dimensional chiral magnet, it was generally considered that a tilted magnetic field is harmful to its formation and stability. Here we investigated the angular-dependent stability of magnetic skyrmions in FeGe nanosheets by using high-resolution Lorentz transmission electron microscopy (Lorentz TEM). Besides the theoretically predicted destruction of skyrmion lattice state by an oblique magnetic field as the temperature closes to its magnetic Curie temperature Tc ∼ 278 K, we also observed an unexpected reentry-like phenomenon at the moderate temperatures near the border between conical and skyrmion phase, Tt ∼ 240 K. This behavior is completely beyond the theoretical prediction in a conventional two-dimensional (2D) system. Instead, a three-dimensional (3D) model involving the competition between conical phase and skyrmions is likely to play a crucial role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA