Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(45): 25933-25943, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34782909

RESUMO

The topologically close-packed (TCP) structural characteristics in a model metallic glass (MG) of Cu64.5Zr35.5 have been investigated by molecular dynamics simulations. A group of structural indicators based on the largest standard cluster (LaSC) have been correlated with the non-affine displacement (D2) of atoms, so as to reveal the hidden correlation between local structures and deformation behavior of Cu64.5Zr35.5 during compression. It was found that the 15 types of Top-10 LaSCs are all TCP-like ones, among which the most numerous icosahedron (Z12 and 1-Z12) decreases in population sharply and moderately during respectively the elastic and yield region of compression; while in the fluid-flow region, the number of all Top-10 LaSCs tends to be almost constant. Low-D2 atoms prefer to link with each other; while medium-D2 atoms act as transition structures between backbone areas and deformation areas. Most interestingly, the deformation response of TCP-like atoms is not only determined by its nearest neighbor characteristics, but also depends on the linkage with other atoms. In addition, icosahedral atoms with a higher degree of medium range five-fold symmetry (MRFFS) are more resistant to the stress-induced deformation. Therefore, the TCP characteristics, including its nearest neighbor feature and the inter-connection between TCP LaSCs, are closely related with the deformation behavior of atoms, especially the MRFFS (up to 5 layers) of icosahedral atoms. These findings shed new light on the understanding of the relationship between microstructure and deformation response of MGs, which will promote the development of deformation theory of MGs.

2.
RSC Adv ; 11(63): 39829-39837, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-35494156

RESUMO

The solidification of pure aluminum has been studied by a large-scale molecular dynamic simulation. The potential energy, position D, height H, and width W of the first peak and valley of PDF curves, and the local structures were investigated. It was found that the FCC-crystallization ability of pure Al is so strong that still local crystal regions exist in the amorphized solid. As the temperature decreases, besides the counter-intuitive increase in D p (D of the first peak), H p increases monotonically; W p, D v, and H v decrease monotonically; only W v first decreases and then increases. They all change critically when phase transition happens. After the nucleation, orientation-disordered HCP-regions, as the grain boundaries or defects of FCC crystals, rapidly transform into FCC structures, and then the surviving HCP-regions regularize into few parallel layers or orientation-disordered HCP-regions. If parallel layers result in dislocation pinning, structural evolution terminates; otherwise, it continues. These findings will have a positive impact on the development of the solidification and nucleation theory.

3.
J Phys Chem A ; 112(48): 12326-36, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18973323

RESUMO

On the basis of the quantum Sutton-Chen potential, the rapid solidification processes of liquid silver have been studied by molecular dynamics simulation for four cooling rates. By means of several analysis methods, the competitions and transitions between microstructures during the cooling processes have been analyzed intensively. It is found that there are two phase transitions in all simulation processes. The first one is from liquid state to metastable (transitional) body-centered cubic (bcc) phase. The initial crystallization temperature T(ic) increases with the decrease of the cooling rate. The second one is from the transitional bcc phase to the final solid phase. This study validates the Ostwald's step rule and provides evidence for the prediction that the metastable bcc phase forms first from liquid. Further analyses reveal that the final solid at 273 K can be a mixture of hexagonal close-packed (hcp) and face-centered cubic (fcc) microstructures with various proportions of the two, and the slower the cooling rate is, the higher proportion the fcc structure occupies.

4.
Sci Rep ; 7: 43111, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230068

RESUMO

To investigate the structural evolution and hereditary mechanism of icosahedral nano-clusters formed during rapid solidification, a molecular dynamics (MD) simulation study has been performed for a system consisting of 107 atoms of liquid Mg70Zn30 alloy. Adopting Honeycutt-Anderson (HA) bond-type index method and cluster type index method (CTIM-3) to analyse the microstructures in the system it is found that for all the nano-clusters including 2~8 icosahedral clusters in the system, there are 62 kinds of geometrical structures, and those can be classified, by the configurations of the central atoms of basic clusters they contained, into four types: chain-like, triangle-tailed, quadrilateral-tailed and pyramidal-tailed. The evolution of icosahedral nano-clusters can be conducted by perfect heredity and replacement heredity, and the perfect heredity emerges when temperature is slightly less than Tm then increase rapidly and far exceeds the replacement heredity at Tg; while for the replacement heredity, there are three major modes: replaced by triangle (3-atoms), quadrangle (4-atoms) and pentagonal pyramid (6-atoms), rather than by single atom step by step during rapid solidification processes.

5.
Sci Rep ; 6: 31653, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27526660

RESUMO

The crystallization characteristics in supercooled liquid Zn during isothermal relaxation were investigated using molecular dynamics simulations by adopting the cluster-type index method (CTIM) and the tracing method. Results showed that the crystallization process undergo three different stages. The size of the critical nucleus was found to be approximately 90-150 atoms in this system; the growth of nuclei proceeded via the successive formation of hcp and fcc structures with a layered distribution; and finally, the system evolved into a much larger crystal with a distinct layered distribution of hcp and fcc structures with an 8R stacking sequence of ABCBACAB by adjusting all of the atoms in the larger clusters according to a certain rule.

6.
J Phys Chem B ; 116(26): 7746-53, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22690957

RESUMO

The atomic mechanism of liquid-glass transition for Ca(7)Mg(3) alloy during the rapid quenching processes is studied by the molecular dynamics simulations. The temperature dependences of structural, thermodynamic, and dynamic properties during the liquid-glass transition have been investigated. It is found that onset temperatures where these different properties begin to deviate from the equilibrium liquid are identical and near the melting temperature T(m). The liquid-glass transition temperatures in structure (T(g)(Str)) and dynamics (T(g)(Dyn)) are identical and higher than the calorimetric one (T(g)(Cal)), which are consistent with many experiments and computer simulations. The solid- and liquid-like atoms are defined by the Debye-Waller factor. It reveals that the solid-like atoms hold lower potential and higher degree of local order. On the basis of the evolution of solid-like atoms, the atomic mechanisms in structure, thermodynamics, and dynamics transition are systematically elucidated, which are consistent with the potential energy landscape.

7.
J Chem Phys ; 127(17): 174503, 2007 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17994823

RESUMO

To deeply understand the formation mechanism of a critical nucleus during the nucleation process of liquid metal sodium, a system consisting of 10 000 Na atoms has been simulated by using molecular dynamics method. The evolutions of nuclei are traced directly, adopting the cluster-type index method. It is found that the energies of clusters and their geometrical constraints interplay to form the favorable microstructures during the nucleation process. The nucleus can be formed through many different pathways, and the critical size of the nucleus would be different for each pathway. It is also found that the critical nucleus is nonspherical and may include some metastable structures. Furthermore, the size of the cluster and its internal structure both play a crucial role in determining whether it is a critical nucleus, and this is in agreement with the simulations by computing the free energy of the Lennard-Jones system [D. Moroni, P. R. ten Wolde, and P. G. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005)].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA