Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567533

RESUMO

Transformed epithelial cells can activate programs of epithelial plasticity and switch from a sessile, epithelial phenotype to a motile, mesenchymal phenotype. This process is linked to the acquisition of an invasive phenotype and the formation of distant metastases. The development of compounds that block the acquisition of an invasive phenotype or revert the invasive mesenchymal phenotype into a more differentiated epithelial phenotype represent a promising anticancer strategy. In a high-throughput assay based on E-cadherin (re)induction and the inhibition of tumor cell invasion, 44,475 low molecular weight (LMW) compounds were screened. The screening resulted in the identification of candidate compounds from the PROAM02 class. Selected LMW compounds activated E-cadherin promoter activity and inhibited cancer cell invasion in multiple metastatic human cancer cell lines. The intraperitoneal administration of selected LMW compounds reduced the tumor burden in human prostate and breast cancer in vivo mouse models. Moreover, selected LMW compounds decreased the intra-bone growth of xenografted human prostate cancer cells. This study describes the identification of the PROAM02 class of small molecules that can be exploited to reduce cancer cell invasion and metastases. Further clinical evaluation of selected candidate inhibitors is warranted to address their safety, bioavailability and antitumor efficacy in the management of patients with aggressive cancers.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Próstata/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Comput Aided Mol Des ; 28(9): 941-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25031075

RESUMO

Predicting compound chemical stability is important because unstable compounds can lead to either false positive or to false negative conclusions in bioassays. Experimental data (COMDECOM) measured from DMSO/H2O solutions stored at 50 °C for 105 days were used to predicted stability by applying rule-embedded naïve Bayesian learning, based upon atom center fragment (ACF) features. To build the naïve Bayesian classifier, we derived ACF features from 9,746 compounds in the COMDECOM dataset. By recursively applying naïve Bayesian learning from the data set, each ACF is assigned with an expected stable probability (p(s)) and an unstable probability (p(uns)). 13,340 ACFs, together with their p(s) and p(uns) data, were stored in a knowledge base for use by the Bayesian classifier. For a given compound, its ACFs were derived from its structure connection table with the same protocol used to drive ACFs from the training data. Then, the Bayesian classifier assigned p(s) and p(uns) values to the compound ACFs by a structural pattern recognition algorithm, which was implemented in-house. Compound instability is calculated, with Bayes' theorem, based upon the p(s) and p(uns) values of the compound ACFs. We were able to achieve performance with an AUC value of 84% and a tenfold cross validation accuracy of 76.5%. To reduce false negatives, a rule-based approach has been embedded in the classifier. The rule-based module allows the program to improve its predictivity by expanding its compound instability knowledge base, thus further reducing the possibility of false negatives. To our knowledge, this is the first in silico prediction service for the prediction of the stabilities of organic compounds.


Assuntos
Inteligência Artificial , Teorema de Bayes , Estabilidade de Medicamentos , Algoritmos , Simulação por Computador , Modelos Químicos
3.
J Biomol Screen ; 14(5): 557-65, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19483143

RESUMO

The technological evolution of the 1990s in both combinatorial chemistry and high-throughput screening created the demand for rapid access to the compound deck to support the screening process. The common strategy within the pharmaceutical industry is to store the screening library in DMSO solution. Several studies have shown that a percentage of these compounds decompose in solution, varying from a few percent of the total to a substantial part of the library. In the COMDECOM (COMpound DECOMposition) project, the compound stability of screening compounds in DMSO solution is monitored in an accelerated thermal, hydrolytic, and oxidative decomposition program. A large database with stability data is collected, and from this database, a predictive model is being developed. The aim of this program is to build an algorithm that can flag compounds that are likely to decompose-information that is considered to be of utmost importance (e.g., in the compound acquisition process and when evaluation screening results of library compounds, as well as in the determination of optimal storage conditions).


Assuntos
Dimetil Sulfóxido/química , Estabilidade de Medicamentos , Preparações Farmacêuticas/química , Soluções Farmacêuticas/química , Solventes/química , Bases de Dados Factuais , Modelos Teóricos , Estrutura Molecular , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA