Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37425856

RESUMO

Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the mouse medial prefrontal cortex (mPFC). Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (ApoE high ) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the ApoE high microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.

2.
J Gerontol A Biol Sci Med Sci ; 77(2): 268-275, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34610126

RESUMO

To explore the role of the small heat shock protein beta 1 (HspB1, also known as Hsp25 in rodents and Hsp27 in humans) in longevity, we created a Caenorhabiditis elegans model with a high level of ubiquitous expression of the naked mole-rat HspB1 protein. The worms showed increased life span under multiple conditions and also increased resistance to heat stress. RNAi experiments suggest that HspB1-induced life extension is dependent on the transcription factors skn-1 (Nrf2) and hsf-1 (Hsf1). RNAseq from HspB1 worms showed an enrichment in several skn-1 target genes, including collagen proteins and lysosomal genes. Expression of HspB1 also improved functional outcomes regulated by SKN-1, specifically oxidative stress resistance and pharyngeal integrity. This work is the first to link a small heat shock protein with collagen function, suggesting a novel role for HspB1 as a hub between canonical heat response signaling and SKN-1 transcription.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Resposta ao Choque Térmico/genética , Longevidade/genética , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA