Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Biol ; 104(6): 1667-1674, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553910

RESUMO

Mathematical and statistical models underlie many of the world's most important fisheries management decisions. Since the 19th century, difficulty calibrating and fitting such models has been used to justify the selection of simple, stationary, single-species models to aid tactical fisheries management decisions. Whereas these justifications are reasonable, it is imperative that we quantify the value of different levels of model complexity for supporting fisheries management, especially given a changing climate, where old methodologies may no longer perform as well as in the past. Here we argue that cost-benefit analysis is an ideal lens to assess the value of model complexity in fisheries management. While some studies have reported the benefits of model complexity in fisheries, modeling costs are rarely considered. In the absence of cost data in the literature, we report, as a starting point, relative costs of single-species stock assessment and marine ecosystem models from two Australian organizations. We found that costs varied by two orders of magnitude, and that ecosystem model costs increased with model complexity. Using these costs, we walk through a hypothetical example of cost-benefit analysis. The demonstration is intended to catalyze the reporting of modeling costs and benefits.


Assuntos
Análise Custo-Benefício , Ecossistema , Pesqueiros , Pesqueiros/economia , Austrália , Animais , Conservação dos Recursos Naturais/economia , Modelos Biológicos , Peixes , Modelos Teóricos
2.
Neuroimage ; 163: 24-33, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28889004

RESUMO

A method called Quantitative Ultra-Short Time-to-Echo Contrast Enhanced (QUTE-CE) Magnetic Resonance Imaging (MRI) which utilizes superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent to yield positive contrast angiograms with high clarity and definition is applied to the whole live rat brain. QUTE-CE MRI intensity data are particularly well suited for measuring quantitative cerebral blood volume (qCBV). A global map of qCBV in the awake resting-state with unprecedented detail was created via application of a 3D MRI rat brain atlas with 173 segmented and annotated brain areas. From this map we identified two distributed, integrated neural circuits showing the highest capillary densities in the brain. One is the neural circuitry involved with the primary senses of smell, hearing and vision and the other is the neural circuitry of memory. Under isoflurane anesthesia, these same circuits showed significant decreases in qCBV suggesting a role in consciousness. Neural circuits in the brainstem associated with the reticular activating system and the maintenance of respiration, body temperature and cardiovascular function showed an increase in qCBV with anesthesia. During awake CO2 challenge, 84 regions showed significant increases relative to an awake baseline state. This CO2 response provides a measure of cerebral vascular reactivity and regional perfusion reserve with the highest response measured in the somatosensory cortex. These results demonstrate the utility of QUTE-CE MRI for qCBV analysis and offer a new perspective on brain function and vascular organization.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Angiografia Cerebral/métodos , Nanopartículas de Magnetita , Animais , Volume Sanguíneo/fisiologia , Determinação do Volume Sanguíneo/métodos , Circulação Cerebrovascular/fisiologia , Compostos Férricos , Imageamento por Ressonância Magnética/métodos , Ratos , Ratos Sprague-Dawley
3.
Int J Biomed Imaging ; 2024: 9763364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644981

RESUMO

Background: Ferumoxytol (Ferahame, AMAG Pharmaceuticals, Waltham, MA) is increasingly used off-label as an MR contrast agent due to its relaxivity and safety profiles. However, its potent T2∗ relaxivity limits achievable T1-weighted positive contrast and leads to artifacts in standard MRI protocols. Optimization of protocols for ferumoxytol deployment is necessary to realize its potential. Methods: We present first-in-human clinical results of the Quantitative Ultrashort Time-to-Echo Contrast Enhanced (QUTE-CE) MRA technique using the superparamagnetic iron oxide nanoparticle agent ferumoxytol for vascular imaging of the head/brain in 15 subjects at 3.0T. The QUTE-CE MRA method was implemented on a 3T scanner using a stack-of-spirals 3D Ultrashort Time-to-Echo sequence. Time-of-flight MRA and standard TE T1-weighted (T1w) images were also collected. For comparison, gadolinium-enhanced blood pool phase images were obtained retrospectively from clinical practice. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and intraluminal signal heterogeneity (ISH) were assessed and compared across approaches with Welch's two-sided t-test. Results: Fifteen volunteers (54 ± 17 years old, 9 women) participated. QUTE-CE MRA provided high-contrast snapshots of the arterial and venous networks with lower intraluminal heterogeneity. QUTE-CE demonstrated significantly higher SNR (1707 ± 226), blood-tissue CNR (1447 ± 189), and lower ISH (0.091 ± 0.031) compared to ferumoxytol T1-weighted (551 ± 171; 319 ± 144; 0.186 ± 0.066, respectively) and time-of-flight (343 ± 104; 269 ± 82; 0.190 ± 0.016, respectively), with p < 0.001 in each comparison. The high CNR increased the depth of vessel visualization. Vessel lumina were captured with lower heterogeneity. Conclusion: Quantitative Ultrashort Time-to-Echo Contrast-Enhanced MR angiography provides approximately 5-fold superior contrast with fewer artifacts compared to other contrast-enhanced vascular imaging techniques using ferumoxytol or gadolinium, and to noncontrast time-of-flight MR angiography, for clinical vascular imaging. This trial is registered with NCT03266848.

4.
PLoS One ; 16(8): e0256749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34449808

RESUMO

Cerebrovascular abnormality is linked to Alzheimer's disease and related dementias (ADRDs). ApoE-Ɛ4 (APOE4) is known to play a critical role in neurovascular dysfunction, however current medical imaging technologies are limited in quantification. This cross-sectional study tested the feasibility of a recently established imaging modality, quantitative ultra-short time-to-echo contrast-enhanced magnetic resonance imaging (QUTE-CE MRI), to identify small vessel abnormality early in development of human APOE4 knock-in female rat (TGRA8960) animal model. At 8 months, 48.3% of the brain volume was found to have significant signal increase (75/173 anatomically segmented regions; q<0.05 for multiple comparisons). Notably, vascular abnormality was detected in the tri-synaptic circuit, cerebellum, and amygdala, all of which are known to functionally decline throughout AD pathology and have implications in learning and memory. The detected abnormality quantified with QUTE-CE MRI is likely a result of hyper-vascularization, but may also be partly, or wholly, due to contributions from blood-brain-barrier leakage. Further exploration with histological validation is warranted to verify the pathological cause. Regardless, these results indicate that QUTE-CE MRI can detect neurovascular dysfunction with high sensitivity with APOE4 and may be helpful to provide new insights into health and disease.


Assuntos
Apolipoproteína E4/genética , Barreira Hematoencefálica/diagnóstico por imagem , Encéfalo/anormalidades , Animais , Barreira Hematoencefálica/patologia , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Imageamento por Ressonância Magnética , Ratos
5.
Abdom Radiol (NY) ; 46(7): 3288-3300, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33666735

RESUMO

PURPOSE: To evaluate the feasibility of Quantitative Ultrashort-Time-to-Echo Contrast-Enhanced (QUTE-CE) MRA using ferumoxytol as a contrast agent for abdominal angiography in the kidney. METHODS: Four subjects underwent ferumoxytol-enhanced MRA with the 3D UTE Spiral VIBE WIP sequence at 3 T. Image quality metrics were quantified, specifically the blood Signal-to-Noise Ratio (SNR), blood-tissue Contrast-to-Noise Ratio (CNR) and Intraluminal Signal Heterogeneity (ISH) from both the aorta and inferior vena cava (IVC). Morphometric analysis of the vessels was performed using manual approach and semi-automatic approach using Vascular Modeling ToolKit (VMTK). Image quality and branching order were compared between QUTE-CE MRA and the Gadolinium (Gd) CEMRA reference image. RESULTS: QUTE-CE MRA provides a bright blood snapshot that delineates arteries and veins equally in the same scan. The maximum SNR and CNR values were 3,282 ± 1,218 and 1,295 ± 580, respectively - significantly higher than available literature values using other CEMRA techniques. QUTE-CE MRA had lower ISH and depicted higher vessel branching order (7th vs 3rd) within the kidney compared to a standard dynamic clinical Gd CEMRA scan. Morphometric analysis yielded quantitative results for the total kidney volume, total cyst volume and for diameters of the branching arterial network down to the 7th branch. Vessel curvature was significantly increased (p < 0.001) in the presence of a renal cyst compared to equivalent vessels in normal kidney regions. CONCLUSION: QUTE-CE MRA is feasible for kidney angiography, providing greater detail of kidney vasculature, enabling quantitative morphometric analysis of the abdominal and intra-renal vessels and yielding metrics relevant to vascular diseases while using a contrast agent ferumoxytol that is safe for CKD patients.


Assuntos
Óxido Ferroso-Férrico , Angiografia por Ressonância Magnética , Meios de Contraste , Gadolínio , Humanos , Rim/diagnóstico por imagem
6.
Data Brief ; 17: 393-396, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29876407

RESUMO

The data in this article provide detail regarding the rat brain atlas measurements discussed in our research article, "Quantitative vascular neuroimaging of the rat brain using superparamagnetic nanoparticles: New insights on vascular organization and brain function" (Gharagouzloo et al., 2017) [1]. This article provides datasets of quantitative cerebral blood volume (qCBV) measurements across 173 regions of the rat brain in 11 healthy rats. State-changes from this baseline during isoflurane and CO2 administration are provided for all regions and all animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA