RESUMO
PURPOSE OF REVIEW: Deficiencies in micronutrients persist as widespread global challenges, where supplementation remains a crucial therapeutic approach. This review aims to elucidate the intricate relationships between micronutrient supplementation - specifically iron, selenium (Se), and vitamin D (Vit D) - and gut microbiota composition, investigating their collective impact on host health and disease susceptibility. RECENT FINDINGS: Maintaining balanced iron levels is essential for gut microbiota equilibrium and host health, as both iron deficiency and excess disrupt gut bacterial balance, affecting colon health. Se supplementation can restore and improve the gut microbial balance, influencing health outcomes not only in the gut but also in areas such as neuroprotection in the brain, testicular health, and metabolic syndrome. Clinical and experimental models demonstrate that Vit D modulates the gut microbiome, enhancing anti-inflammatory effects, supporting metabolic health, and potentially reducing the risk of gut-related behavioral changes and diseases. SUMMARY: Findings of this review emphasize that balanced iron levels are essential for maintaining a healthy gut microbiota composition and underscore the beneficial effects of Se and Vit D in modulating the gut microbiome. The interactions between micronutrients and the gut microbiome are complex but may have a broad spectrum of health outcomes.
Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Ferro , Micronutrientes , Selênio , Vitamina D , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Vitamina D/farmacologia , Vitamina D/administração & dosagem , Selênio/administração & dosagem , Selênio/farmacologia , Micronutrientes/farmacologia , AnimaisRESUMO
Aluminum (Al) is known to induce neurotoxic effects, potentially contributing to Alzheimer's disease (AD) pathogenesis. Recent studies suggest that epigenetic modification may contribute to Al neurotoxicity, although the mechanisms are still debatable. Therefore, the objective of the present study was to summarize existing data on the involvement of epigenetic mechanisms in Al-induced neurotoxicity, especially AD-type pathology. Existing data demonstrate that Al exposure induces disruption in DNA methylation, histone modifications, and non-coding RNA expression in brains. Alterations in DNA methylation following Al exposure were shown to be mediated by changes in expression and activity of DNA methyltransferases (DNMTs) and ten-eleven translocation proteins (TETs). Al exposure was shown to reduce histone acetylation by up-regulating expression of histone deacetylases (HDACs) and impair histone methylation, ultimately contributing to down-regulation of brain-derived neurotrophic factor (BDNF) expression and activation of nuclear factor κB (NF-κB) signaling. Neurotoxic effects of Al exposure were also associated with aberrant expression of non-coding RNAs, especially microRNAs (miR). Al-induced patterns of miR expression were involved in development of AD-type pathology by increasing amyloid ß (Aß) production through up-regulation of Aß precursor protein (APP) and ß secretase (BACE1) expression (down-regulation of miR-29a/b, miR-101, miR-124, and Let-7c expression), increasing in neuroinflammation through NF-κB signaling (up-regulation of miR-9, miR-125b, miR-128, and 146a), as well as modulating other signaling pathways. Furthermore, reduced global DNA methylation, altered histone modification, and aberrant miRNA expression were associated with cognitive decline in Al-exposed subjects. However, further studies are required to evaluate the contribution of epigenetic mechanisms to Al-induced neurotoxicity and/or AD development.
Assuntos
Alumínio , Doença de Alzheimer , Epigênese Genética , RNA não Traduzido , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Epigênese Genética/efeitos dos fármacos , Humanos , Alumínio/toxicidade , Animais , RNA não Traduzido/metabolismo , RNA não Traduzido/genética , Metilação de DNA/efeitos dos fármacos , MicroRNAs/metabolismo , MicroRNAs/genética , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/etiologiaRESUMO
The objective of the present study was to review the epidemiological and laboratory evidence on the role of aluminum (Al) exposure in the pathogenesis of cardiovascular diseases. Epidemiological data demonstrated an increased incidence of cardiovascular diseases (CVD), including hypertension and atherosclerosis in occupationally exposed subjects and hemodialysis patients. In addition, Al body burden was found to be elevated in patients with coronary heart disease, hypertension, and dyslipidemia. Laboratory studies demonstrated that Al exposure induced significant ultrastructural damage in the heart, resulting in electrocardiogram alterations in association with cardiomyocyte necrosis and apoptosis, inflammation, oxidative stress, inflammation, and mitochondrial dysfunction. In agreement with the epidemiological findings, laboratory data demonstrated dyslipidemia upon Al exposure, resulting from impaired hepatic lipid catabolism, as well as promotion of low-density lipoprotein oxidation. Al was also shown to inhibit paraoxonase 1 activity and to induce endothelial dysfunction and adhesion molecule expression, further promoting atherogenesis. The role of Al in hypertension was shown to be mediated by up-regulation of NADPH-oxidase, inhibition of nitric oxide bioavailability, and stimulation of renin-angiotensin-aldosterone system. It has been also demonstrated that Al exposure targets cerebral vasculature, which may be considered a link between Al exposure and cerebrovascular diseases. Findings from other tissues lend support that ferroptosis, pyroptosis, endoplasmic reticulum stress, and modulation of gut microbiome and metabolome are involved in the development of CVD upon Al exposure. A better understanding of the role of the cardiovascular system as a target for Al toxicity will be useful for risk assessment and the development of treatment and prevention strategies.
Assuntos
Aterosclerose , Doenças Cardiovasculares , Dislipidemias , Hipertensão , Humanos , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Alumínio/toxicidade , Hipertensão/metabolismo , Estresse Oxidativo , Aterosclerose/etiologia , InflamaçãoRESUMO
The objective of the present study was to review the molecular mechanisms of the adverse effects of environmental pollutants on chondrocytes and extracellular matrix (ECM). Existing data demonstrate that both heavy metals, including cadmium (Cd), lead (Pb), and arsenic (As), as well as organic pollutants, including polychlorinated dioxins and furans (PCDD/Fs) and polychlorinated biphenyls (PCB), bisphenol A, phthalates, polycyclic aromatic hydrocarbons (PAH), pesticides, and certain other organic pollutants that target cartilage ontogeny and functioning. Overall, environmental pollutants reduce chondrocyte viability through the induction apoptosis, senescence, and inflammatory response, resulting in cell death and impaired ECM production. The effects of organic pollutants on chondrocyte development and viability were shown to be mediated by binding to the aryl hydrocarbon receptor (AhR) signaling and modulation of non-coding RNA expression. Adverse effects of pollutant exposures were observed in articular and growth plate chondrocytes. These mechanisms also damage chondrocyte precursors and subsequently hinder cartilage development. In addition, pollutant exposure was shown to impair chondrogenesis by inhibiting the expression of Sox9 and other regulators. Along with altered Runx2 signaling, these effects also contribute to impaired chondrocyte hypertrophy and chondrocyte-to-osteoblast trans-differentiation, resulting in altered endochondral ossification. Several organic pollutants including PCDD/Fs, PCBs and PAHs, were shown to induce transgenerational adverse effects on cartilage development and the resulting skeletal deformities. Despite of epidemiological evidence linking human environmental pollutant exposure to osteoarthritis or other cartilage pathologies, the data on the molecular mechanisms of adverse effects of environmental pollutant exposure on cartilage tissue were obtained from studies in laboratory rodents, fish, or cell cultures and should be carefully extrapolated to humans, although they clearly demonstrate that cartilage should be considered a putative target for environmental pollutant toxicity.
Assuntos
Condrócitos , Poluentes Ambientais , Osteoartrite , Humanos , Poluentes Ambientais/toxicidade , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Condrócitos/metabolismo , Osteoartrite/patologia , Osteoartrite/induzido quimicamente , Animais , Condrogênese/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/patologia , Cartilagem/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Metais Pesados/toxicidade , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: Kashin-Beck disease (KBD) is an endemic osteoarthropathy characterized by excessive chondrocytes apoptosis. T-2 toxin exposure has been proved to be its etiology. Connective tissue growth factor (CTGF) exerts a profound influence on cartilage growth and metabolism. We investigated the potential role of CTGF in KBD development and examined CTGF alterations under T-2 toxin stimulation. METHODS: The levels of CTGF and chondrocyte apoptosis-related markers in cartilage and primary chondrocytes from KBD and control groups were measured using qRT-PCR, Western blotting, immunohistochemistry, and immunofluorescence. We analyzed expression changes of these genes in response to T-2 toxin. Apoptosis rates of chondrocytes induced by T-2 toxin were measured by flow cytometry and TUNEL assay. The active pharmaceutical ingredient targeting CTGF was screened through Comparative Toxicogenomics Database, and molecular docking was performed using AutoDock Tools. RESULTS: The CTGF levels in KBD cartilage and chondrocytes were significantly elevated and positively associated with the levels of apoptosis-related genes. T-2 toxin exposure increased CTGF and apoptosis-related gene levels in chondrocytes, with apoptosis rates rising alongside T-2 toxin concentration. Curcumin was identified as targeting CTGF and exhibited effective binding. It could down-regulate CTGF, apoptosis-related genes, such as Cleaved caspase 3 and BAX, and also significantly reduce apoptosis rate in chondrocytes treated with T-2 toxin. CONCLUSION: CTGF plays a crucial role in the development of KBD. Curcumin has shown potential in inhibiting CTGF levels and reducing chondrocyte apoptosis, highlighting its promise as a therapeutic agent for preventing cartilage damage in KBD. Our findings provided valuable insights into the pathogenesis of KBD and could promote the development of novel therapeutic strategies for this debilitating disease.
Assuntos
Apoptose , Condrócitos , Fator de Crescimento do Tecido Conjuntivo , Doença de Kashin-Bek , Toxina T-2 , Doença de Kashin-Bek/patologia , Condrócitos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/genética , Humanos , Toxina T-2/toxicidade , Toxina T-2/análogos & derivados , Masculino , Simulação de Acoplamento Molecular , AnimaisRESUMO
Mercury is a ubiquitous environmental contaminant and can be found in inorganic (Hg0, Hg+ and Hg2+) and organic forms (chiefly CH3Hg+ or MeHg+). The main route of human, mammals and bird exposure occurs via predatory fish ingestion. Occupational exposure to Hg0 (and Hg2+) can also occur; furthermore, in gold mining areas the exposure to inorganic Hg can also be high. The toxicity of electrophilic forms of Hg (E+Hg) is mediated by disruption of thiol (-SH)- or selenol (-SeH)-containing proteins. The therapeutic approaches to treat methylmercury (MeHg+), Hg0 and Hg2+ are limited. Here we discuss the potential use of ebselen as a potential therapeutic agent to lower the body burden of Hg in man. Ebselen is a safe drug for humans and has been tested in clinical trials (for instance, brain ischemia, noise-induce hearing loss, diabetes complications, bipolar disorders) at doses varying from 400 to 3600 mg per day. Two clinical trials with ebselen in moderate and severe COVID are also approved. Ebselen can be metabolized to an intermediate with -SeH (selenol) functional group, which has a greater affinity to electrophilic Hg (E+Hg) forms than the available thiol-containing therapeutic agents. Accordingly, as observed in vitro and rodent models in vivo, Ebselen exhibited protective effects against MeHg+, indicating its potential as a therapeutic agent to treat MeHg+ overexposure. The combined use of ebselen with thiol-containing molecules (e.g. N-acetylcysteine and enaramide)) is also commented, because they can have synergistic protective effects against MeHg+.
Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Humanos , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Azóis/uso terapêutico , Compostos de Sulfidrila , Mamíferos/metabolismoRESUMO
Developmental methylmercury (MeHg) exposures cause latent neurotoxic effects in adults; however, the mechanisms underlying the latent neurotoxicity are not fully understood. In the current study, we used C. elegans as an animal model to investigate the latent neurotoxic effects of developmental MeHg exposures on glutamatergic neurons. The young larvae stage 1 worms were exposed to MeHg (0.05 ~ 5 µM) for 48 h. The morphological and behavioral endpoints of glutamatergic neurons were compared when worms reached to adult stages including the young adult stage (day 1 adult) and the old adult stage (day 10 adult). Here, we showed that C. elegans glutamatergic neurons were morphologically intact following low or medium MeHg exposures (0.05 ~ 0.5 µM). The morphological damage of glutamatergic neurons appeared to be pronounced in day 10 adults developmentally exposed to 5 µM MeHg. Behavioral assays also showed an age-dependent latent effect of MeHg. In the nose touch response assay, only day 10 adult worms exhibited a functional decline following prior 5 µM MeHg exposure. Moreover, the disruption of NaCl memory appeared only in day 1 adults following MeHg exposures but not in day 10 adults. The expression of C. elegans homologs of mammalian vesicular glutamate transporter (eat-4) was repressed in day 1 adults, while the glutamate receptor homolog (glr-1) was upregulated in day 10 adults with 5 µM MeHg. In the comparison of age-dependent changes in the insulin-like pathway (daf-2/age-1/daf-16) following MeHg exposures, we showed that the daf-2/age-1/daf-16 pathway was mobilized in day 1 adults but repressed in day 10 adults. Collectively, our data supports a conclusion that MeHg-induced glutamatergic neurotoxicity exhibits an age-dependent pattern, possibly related to the prominent changes in age-dependent modulation in the glutamatergic neurotransmission and metabolic pathways.
Assuntos
Proteínas de Caenorhabditis elegans , Compostos de Metilmercúrio , Animais , Caenorhabditis elegans , Compostos de Metilmercúrio/toxicidade , Proteínas de Caenorhabditis elegans/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Mamíferos/metabolismoRESUMO
PURPOSE: To assess whether polymorphisms of haptoglobin (Hp) modify the relationship between dietary iron and the risk of gestational iron-deficiency anemia (IDA). METHODS: This study analyzed 1430 singleton pregnant women aged 20 ~ ≤ 48 years from the 2017-2019 National Nutrition and Health Survey of Pregnant Women in Taiwan. Sociodemographic, blood biochemical, Hp phenotype, and 24-h dietary recall data were collected. Erythropoiesis-related total prenatal supplementation was defined as the reported use of multivitamins and minerals, vitamin B complex, folate, and iron. RESULTS: Distributions of the Hp 1-1, Hp 2-1, and Hp 2-2 phenotypes were 13.6, 39.8, and 46.5%, respectively. Women with the Hp 1-1 phenotype had the lowest mean levels of serum ferritin (p-trend = 0.017), the highest prevalence of gestational ID (p-trend = 0.033) as well as the highest prevalence of gestational IDA (did not reach statistical differences, p-trend = 0.086). A gene-diet interaction on serum ferritin was observed between the Hp 1 and Hp 2 (2-1/2-2) alleles (p < 0.001). An adjusted multivariate logistic regression showed that compared to those with a normal blood iron status and who reported using erythropoiesis-related total prenatal supplements, those who did not had a 4.05-fold [odds ratio (OR) = 4.05 (95% confidence interval (CI) 2.63-6.24), p < 0.001] increased risk of gestational IDA. The corresponding ORs for carriers of the Hp 1 and Hp 2 alleles were 4.78 (95% CI 1.43-15.99) and 3.79 (95% CI 2.37-6.06), respectively. CONCLUSION: Pregnant women who are Hp 1 carriers are at increased risk for developing IDA if they do not meet the recommended dietary allowance for iron or use erythropoiesis-related prenatal supplements.
Assuntos
Anemia Ferropriva , Feminino , Humanos , Gravidez , Anemia Ferropriva/epidemiologia , Anemia Ferropriva/genética , Ferro da Dieta , Haptoglobinas/genética , Ferro , Suplementos Nutricionais , Ácido Fólico , Vitaminas , FerritinasRESUMO
Methylmercury (MeHg) remains a global public health issue because of its frequent presence in human food sources obtained from the water. The excretion of MeHg in humans occurs slowly with a biological half-time of 32-47 days. Short-term MeHg exposure may cause long-lasting neurotoxicity. The excretion through feces is a major route in the demethylation of MeHg. Accumulating evidence suggests that the intestinal microbiota plays an important role in the demethylation of MeHg, thereby protecting the host from neurotoxic effects. Here, we discuss recent developments on the role of intestinal microbiota in MeHg metabolism, based on in vitro cell culture experiments, experimental animal studies and human investigations. Demethylation by intestinal bacteria is the rate-limiting step in MeHg metabolism and elimination. The identity of bacteria strains responsible for this biotransformation is currently unknown; however, the non-homogenous distribution of intestinal microbiota may lead to different demethylation rates in the intestinal tract. The maintenance of intestinal barrier function by intestinal microbiota may afford protection against MeHg-induced neurotoxicity, which warrant future investigations. We also discuss studies investigating the effects of MeHg exposure on the population structural stability of intestinal microbiota in several host species. Although this is an emerging area in metal toxicity, current research suggests that a change in certain phyla in the intestinal microbiota may indicate MeHg overexposure.
RESUMO
The objective of the present study was to review the existing epidemiological and laboratory findings supporting the role of toxic metal exposure in non-alcoholic fatty liver disease (NAFLD). The existing epidemiological studies demonstrate that cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg) exposure was associated both with an increased risk of NAFLD and altered biochemical markers of liver injury. Laboratory studies demonstrated that metal exposure induces hepatic lipid accumulation resulting from activation of lipogenesis and inhibition of fatty acid ß-oxidation due to up-regulation of sterol regulatory element-binding protein 1 (SREBP-1), carbohydrate response element binding protein (ChREBP), peroxisome proliferator-activated receptor γ (PPARγ), and down-regulation of PPARα. Other metabolic pathways involved in this effect may include activation of reactive oxygen species (ROS)/extracellular signal-regulated kinase (ERK) and inhibition of AMP-activated protein kinase (AMPK) signaling. The mechanisms of hepatocyte damage during development of metal-induced hepatic steatosis were shown to involve oxidative stress, endoplasmic reticulum stress, pyroptosis, ferroptosis, and dysregulation of autophagy. Induction of inflammatory response contributing to progression of NAFLD to non-alcoholic steatohepatitis (NASH) upon toxic metal exposure was shown to be mediated by up-regulation of nuclear factor κB (NF-κB) and activation of NRLP3 inflammasome. Moreover, epigenetic effects of the metals, as well as their effect on gut microbiota and gut wall integrity were also shown to mediate their role in NAFLD development. Despite being demonstrated for Cd, Pb, and As, the contribution of these mechanisms into Hg-induced NAFLD is yet to be estimated. Therefore, further studies are required to clarify the intimate mechanisms underlying the relationship between heavy metal and metalloid exposure and NAFLD/NASH to reveal the potential targets for treatment and prevention of metal-induced NAFLD.
Assuntos
Arsênio , Mercúrio , Hepatopatia Gordurosa não Alcoólica , Humanos , Cádmio , Arsênio/metabolismo , Chumbo/metabolismo , Mercúrio/metabolismo , FígadoRESUMO
Hypoxia-inducible factor 1 (HIF-1) is an oxygen-sensing transcriptional regulator orchestrating a complex of adaptive cellular responses to hypoxia. Several studies have demonstrated that toxic metal exposure may also modulate HIF-1α signal transduction pathway, although the existing data are scarce. Therefore, the present review aims to summarize the existing data on the effects of toxic metals on HIF-1 signaling and the potential underlying mechanisms with a special focus on prooxidant effect of the metals. The particular effect of metals was shown to be dependent on cell type, varying from down- to up-regulation of HIF-1 pathway. Inhibition of HIF-1 signaling may contribute to impaired hypoxic tolerance and adaptation, thus promoting hypoxic damage in the cells. In contrast, its metal-induced activation may result in increased tolerance to hypoxia through increased angiogenesis, thus promoting tumor growth and contributing to carcinogenic effect of heavy metals. Up-regulation of HIF-1 signaling is mainly observed upon Cr, As, and Ni exposure, whereas Cd and Hg may both stimulate and inhibit HIF-1 pathway. The mechanisms underlying the influence of toxic metal exposure on HIF-1 signaling involve modulation of prolyl hydroxylases (PHD2) activity, as well as interference with other tightly related pathways including Nrf2, PI3K/Akt, NF-κB, and MAPK signaling. These effects are at least partially mediated by metal-induced ROS generation. Hypothetically, maintenance of adequate HIF-1 signaling upon toxic metal exposure through direct (PHD2 modulation) or indirect (antioxidant) mechanisms may provide an additional strategy for prevention of adverse effects of metal toxicity.
Assuntos
Metais Pesados , Fosfatidilinositol 3-Quinases , Humanos , Transdução de Sinais , Hipóxia , Metais Pesados/toxicidade , Fator 1 Induzível por Hipóxia/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia/farmacologiaRESUMO
In the ongoing search for practical uses of rare-earth metal nanoparticles, cerium dioxide nanoparticles (nanoceria) have received special attention. The purpose of this research was to study the biomedical effects of nanocrystalline forms of cerium oxide obtained by different synthesis schemes and to evaluate the effect of different concentrations of nanoceria (from 10-2 to 10-6 M) on cells involved in the regeneration of skin cell structures such as fibroblasts, mesenchymal stem cells, and keratinocytes. Two different methods of nanoceria preparation were investigated: (1) CeO-NPs-1 by precipitation from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid and (2) CeO-NPs-2 by hydrolysis of ammonium hexanitratocerate (IV) under conditions of thermal autoclaving. According to the X-ray diffraction, transmission electron microscopy, and dynamic light scattering data, CeO2-1 consists of individual particles of cerium dioxide (3-5 nm) and their aggregates with diameters of 60-130 nm. CeO2-2 comprises small aggregates of 8-20 nm in diameter, which consist of particles of 2-3 nm in size. Cell cultures of human fibroblasts, human mesenchymal stem cells, and human keratinocytes were cocultured with different concentrations of nanoceria sols (10-2, 10-3, 10-4, 10-5, and 10-6 mol/L). The metabolic activity of all cell types was investigated by MTT test after 48 and 72 h, whereas proliferative activity and cytotoxicity were determined by quantitative cell culture counting and live/dead test. A dependence of biological effects on the method of nanoceria preparation and concentration was revealed. Data were obtained with respect to the optimal concentration of sol to achieve the highest metabolic effect in the used cell cultures. Hypotheses about the mechanisms of the obtained effects and the structure of a fundamentally new medical device for accelerated healing of skin wounds were formulated. The method of nanoceria synthesis and concentration fundamentally and significantly change the biological activity of cell cultures of different types-from suppression to pronounced stimulation. The best biological activity of cell cultures was determined through cocultivation with sols of citrate nanoceria (CeO-NPs-1) at a concentration of 10-3-10-4 M.
Assuntos
Cério , Nanopartículas , Humanos , Cério/farmacologia , Cério/química , Nanopartículas/químicaRESUMO
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Assuntos
Ferroptose , Antioxidantes/farmacologia , Ferro/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Meteorological parameters modulate transmission of the SARS-Cov-2 virus, the causative agent related to coronavirus disease-2019 (COVID-19) development. However, findings across the globe have been inconsistent attributed to several confounding factors. The aim of the present study was to investigate the relationship between reported meteorological parameters from July 1 to October 31, 2020, and the number of confirmed COVID-19 cases in 4 Brazilian cities: São Paulo, the largest city with the highest number of cases in Brazil, and the cities with greater number of cases in the state of Parana during the study period (Curitiba, Londrina and Maringa). The assessment of meteorological factors with confirmed COVID-19 cases included atmospheric pressure, temperature, relative humidity, wind speed, solar irradiation, sunlight, dew point temperature, and total precipitation. The 7- and 15-day moving averages of confirmed COVID-19 cases were obtained for each city. Pearson's correlation coefficients showed significant correlations between COVID-19 cases and all meteorological parameters, except for total precipitation, with the strongest correlation with maximum wind speed (0.717, <0.001) in São Paulo. Regression tree analysis demonstrated that the largest number of confirmed COVID-19 cases was associated with wind speed (between ≥0.3381 and <1.173 m/s), atmospheric pressure (<930.5mb), and solar radiation (<17.98e+3). Lower number of cases was observed for wind speed <0.3381 m/s and temperature <23.86°C. Our results encourage the use of meteorological information as a critical component in future risk assessment models.
Assuntos
COVID-19/epidemiologia , Brasil/epidemiologia , Cidades/epidemiologia , Humanos , Incidência , Conceitos Meteorológicos , Medição de Risco , SARS-CoV-2RESUMO
Ulcerative colitis (UC) is an inflammatory disease with chronic relapsing symptoms. This study investigated the effects of Lycium barbarum polysaccharides (LBP) and capsaicin (CAP) in dextran sulfate sodium (DSS)-induced UC rats. Rats were divided into normal, DSS-induced UC, and UC treated with 100 mg LBP/kg bw, 12 mg CAP/kg bw, or 50 mg LBP/kg bw and 6 mg CAP/kg bw. Rats were fed LBP or CAP orally by gavage for 4 weeks, and UC model was established by feeding 5% DSS in drinking water for 6 days during week 3. Oral CAP and mixture significantly reduced disease activity index. Oral LBP significantly decreased serum malondialdehyde, interleukin (IL)-6, colonic tumor necrosis factor (TNF)-α levels, and protein expression of transient receptor potential cation channel V1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1), but increased serum catalase activity. Oral CAP significantly suppressed serum IL-6, colonic TRPV1 and TRPA1 protein expression, but elevated IL-10 levels, serum superoxide dismutase and catalase activities. The mixture of LBP and CAP significantly reduced serum IL-6, colonic TNF-α and TRPA1 protein. In conclusion, administration of LBP and/or CAP attenuate DSS-induced UC symptoms through inhibiting oxidative stress, proinflammatory cytokines, and protein expression of TRPV1 and TRPA1.
Assuntos
Capsaicina/administração & dosagem , Colite Ulcerativa/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Medicamentos de Ervas Chinesas/administração & dosagem , Proteínas de Fase Aguda/metabolismo , Animais , Capsaicina/farmacologia , Proteínas de Transporte/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Medicamentos de Ervas Chinesas/farmacologia , Interleucina-10/metabolismo , Interleucina-6/sangue , Masculino , Glicoproteínas de Membrana/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismoRESUMO
Active ingredients in the natural products have been considered to be used for alleviating the symptoms of ulcerative colitis, hence the effects of Lycium barbarum polysaccharides (LP) and capsaicin on dextran sulfate sodium (DSS)-induced colitis in rats were investigated. Rats were grouped into normal, DSS induced colitis, and colitis treated with 100 mg LP/kg body weight, 12 mg capsaicin/kg body weight, or combined 50 mg LP/kg body weight and 6 mg capsaicin/kg body weight. Treatment with LP or capsaicin was orally fed by gavage for 4 weeks, and 5% DSS was fed via drinking water for 6 days during week 3. Colon tissue and cecum content were collected for analysis. Treatments with LP and/or capsaicin ameliorated disease activity index scores, severity of colon distortion, and shrinkage of colon length. LP and capsaicin decreased colonic pro-inflammatory cytokine (IFN-γ, IL-17A, and IL-22) levels. Cecal microbiota in colitis rats were enriched with the genus Turicibacter and Lachnospira. The relative abundance of genus Ruminiclostridium_9 and Ruminoclostridium_1 was increased by LP and capsaicin treatment, respectively. Pretreatment with LP or capsaicin inhibits the severity of colonic damage in rats with DSS-induced colitis via anti-inflammation and modulation of colonic microbiota.
RESUMO
Mefloquine, a potent blood schizontocide, is effective against drug-resistant Plasmodium falciparum. This property, along with its unique pharmacokinetic profile, makes mefloquine a widely prescribed antimalarial drug. However, several epidemiological studies have raised concerns on the safety of mefloquine as prophylaxis for malaria. Well-documented side-effects of mefloquine include abnormal dreams, insomnia, anxiety, and depressed mood, as well as nausea and dizziness (the last two most frequent effects). The mechanisms that underlie the neurological/psychiatric complications of mefloquine are poorly understood. The aim of this study was to review the literature on the neurotoxic mechanisms of action of mefloquine to better understand its potential toxicity in the central nervous system, highlighting the mechanisms that lead to its psychiatric disorders. Experimental studies on the neurotoxic effects of mefloquine discussed herein include brain transporters of mefloquine, alteration in neurotransmitters, disruption on calcium (Ca2+) homeostasis and neuroinflammation, generation of oxidative stress response in neurons (involving glutathione, increased F2-isoprostanes, accumulation of cytosolic lipid globules), and alteration of voltage-dependent channels, as well as gap junction intercellular communications. Although several hypotheses have been proposed for the mechanisms that mediate mefloquine-induced brain damage, they are not fully understood, necessitating additional studies in the future.
Assuntos
Antimaláricos/toxicidade , Mefloquina/toxicidade , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso Central , HumanosRESUMO
Methylmercury (MeHg) exposure and its harmful effects on the developing brain continue to be a global environmental health concern. Decline in mitochondrial function is central to the toxic effects of MeHg and pathogenesis of mitochondria-related diseases including Parkinson's disease (PD). LRRK2 (Leucine-rich repeat kinase 2) mutation is one of the most common genetic risk factors for PD. In this study, we utilize an acute toxicity model of MeHg exposure in the model organism Caenorhabditis elegans (C. elegans) to compare lifespan, developmental progression, mitochondrial membrane potential and reactive oxygen species (ROS) between the wild-type N2 strain, wild-type LRRK2 transgenic strain (WLZ1), and mutant LRRK2(G2019S) transgenic strain (WLZ3). Additionally, the expression levels of skn-1 and gst-4 were investigated. Our results show that acute MeHg exposure (5 and 10 µM) caused a significant developmental delay in the N2 and WLZ3 worms. Notably, the worms expressing wild-type LRRK2 were resistant to 5 µM MeHg- induced developmental retardation. ROS levels in response to MeHg exposure were increased in the N2 worms, but not in the WLZ1 or WLZ3 worms. The mitochondrial membrane potential was decreased in the N2 worms but increased in the WLZ1 and WLZ3 worms following MeHg exposure. Furthermore, MeHg exposure increased the expression of skn-1 in N2, but not in WLZ1 worms. Although skn-1 expression was increased in the WLZ3 worms following MeHg exposure, gst-4 expression was not induced. Both skn-1 and gst-4 had higher basal expression levels in LRRK2s transgenic than wild-type N2 worms. Knocking down of skn-1 with feeding RNAi had a significant developmental effect in WLZ1 worms; however, the effect was not found in WLZ3 worms. These results suggest that mitochondrial dysfunction and a defect in the SKN-1 signaling in the LRRK2 G2019S worms contribute to the severe developmental delay, establishing a modulatory role of LRRK2 mutation in MeHg-induced acute toxicity.
Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/biossíntese , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Relação Dose-Resposta a Droga , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
The objective of the present study was to investigate the impact of iron deficiency and iron replenishment on serum iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn) speciation and tissue accumulation in a deferrioxamine-induced model of iron deficiency. A total of 26 male Wistar rats were divided into three groups: control; Fe-deficient; Fe-replenished (with iron (II) gluconate). Serum ferritin and transferrin levels were assessed using immunoturbudimetric method. Liver, spleen, and serum metal levels were assessed using ICP-MS. Speciation analysis was performed using a hyphenated HPLC-ICP-MS technique. Desferrioxamine injections resulted in a significant decrease in tissue iron content that was reversed by Fe supplementation. Iron speciation revealed a significant increase in serum transferrin-bound iron and reduced ferritin-bound Fe levels. Serum but not tissue Cu levels were characterized by a significant decrease in hypoferremic rats, whereas ceruloplasmin-bound fraction tended to increase. At the same time, Zn levels were found to be higher in liver, spleen, and serum of Fe-deficient rats with a predominant increase in low molecular weight fraction.Both iron-deficient and iron-replenished rats were characteirzed by increased transferrin-bound Mn levels and reduced low-molecular weight fraction. Hypothetically, these differences may be associated with impaired Fe metabolism under Fe-deficient conditions predisposing to impairment of essential metal handling. However, further studies aimed at assessment of the impact on Fe deficiency on metal metabolism are highly required.
Assuntos
Cobre/metabolismo , Deficiências de Ferro/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Zinco/metabolismo , Animais , Desferroxamina , Deficiências de Ferro/induzido quimicamente , Masculino , Ratos , Ratos WistarRESUMO
An increasing body of literature has demonstrated that armed conflicts and military activity may contribute to environmental pollution with metals, although the existing data are inconsistent. Therefore, in this paper, we discuss potential sources of military-related metal emissions, environmental metal contamination, as well as routes of metal exposure and their health hazards in relation to military activities. Emission of metals into the environment upon military activity occurs from weapon residues containing high levels of particles containing lead (Pb; leaded ammunition), copper (Cu; unleaded), and depleted uranium (DU). As a consequence, military activity results in soil contamination with Pb and Cu, as well as other metals including Cd, Sb, Cr, Ni, Zn, with subsequent metal translocation to water, thus increasing the risk of human exposure. Biomonitoring studies have demonstrated increased accumulation of metals in plants, invertebrates, and vertebrate species (fish, birds, mammals). Correspondingly, military activity is associated with human metal exposure that results from inhalation or ingestion of released particles, as well as injuries with subsequent metal release from embedded fragments. It is also notable that local metal accumulation following military injury may occur even without detectable fragments. Nonetheless, data on health effects of military-related metal exposures have yet to be systematized. The existing data demonstrate adverse neurological, cardiovascular, and reproductive outcomes in exposed military personnel. Moreover, military-related metal exposures also result in adverse neurodevelopmental outcome in children living within adulterated territories. Experimental in vivo and in vitro studies also demonstrated toxic effects of specific metals as well as widely used metal alloys, although laboratory data report much wider spectrum of adverse effects as compared to epidemiological studies. Therefore, further epidemiological, biomonitoring and laboratory studies are required to better characterize military-related metal exposures and their underlying mechanisms of their adverse toxic effects.