RESUMO
Over recent years, there has been significant progress in the development of immunotherapeutic molecules designed to block the PD-1/PD-L1 axis. These molecules have demonstrated their ability to enhance the immune response by prompting T cells to identify and suppress neoplastic cells. PD-L1 is a type 1 transmembrane protein ligand expressed on T lymphocytes, B lymphocytes, and antigen-presenting cells and is considered a key inhibitory checkpoint involved in cancer immune regulation. PD-L1 immunohistochemical expression in gynecological malignancies is extremely variable based on tumor stage and molecular subtypes. As a result, a class of monoclonal antibodies targeting the PD-1 receptor and PD-L1, known as immune checkpoint inhibitors, has found successful application in clinical settings. In clinical practice, the standard method for identifying suitable candidates for immune checkpoint inhibitor therapy involves immunohistochemical assessment of PD-L1 expression in neoplastic tissues. The most commonly used PD-L1 assays in clinical trials are SP142, 28-8, 22C3, and SP263, each of which has been rigorously validated on specific platforms. Gynecologic cancers encompass a wide spectrum of malignancies originating from the ovaries, uterus, cervix, and vulva. These neoplasms have shown variable response to immunotherapy which appears to be influenced by genetic and protein expression profiles, including factors such as mismatch repair status, tumor mutational burden, and checkpoint ligand expression. In the present paper, an extensive review of PD-L1 expression in various gynecologic cancer types is discussed, providing a guide for their pathological assessment and reporting.
Assuntos
Antígeno B7-H1 , Neoplasias dos Genitais Femininos , Inibidores de Checkpoint Imunológico , Humanos , Feminino , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Neoplasias dos Genitais Femininos/patologia , Neoplasias dos Genitais Femininos/imunologia , Neoplasias dos Genitais Femininos/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismoRESUMO
Among the four endometrial cancer (EC) TCGA molecular groups, the MSI/hypermutated group represents an important percentage of tumors (30%), including different histotypes, and generally confers an intermediate prognosis for affected women, also providing new immunotherapeutic strategies. Immunohistochemistry for MMR proteins (MLH1, MSH2, MSH6 and PMS2) has become the optimal diagnostic MSI surrogate worldwide. This review aims to provide state-of-the-art knowledge on MMR deficiency/MSI in EC and to clarify the pathological assessment, interpretation pitfalls and reporting of MMR status.
Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Neoplasias do Endométrio , Síndromes Neoplásicas Hereditárias , Feminino , Humanos , Imuno-Histoquímica , Prognóstico , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Biomarcadores , Coloração e RotulagemAssuntos
Adenocarcinoma , Neoplasias Encefálicas , Carcinoma Endometrioide , Neoplasias Colorretais , Neoplasias do Endométrio , Síndromes Neoplásicas Hereditárias , Feminino , Humanos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Endométrio/patologia , Neoplasias Encefálicas/patologia , Síndromes Neoplásicas Hereditárias/patologia , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologiaRESUMO
Although novel knowledge has been acquired on the molecular landscape of glioblastoma (GBM), a relatively few steps forward have been made regarding its therapy. With the increasing use of novel immunotherapeutic drugs capable of stimulating the antitumor inflammatory response, in the last decades numerous studies aimed to characterize the tumor-associated microenvironment (TME) and its relationship with the immunogenicity of GBM. In this regard, although the tumor-associated microglia and macrophages (TAMs) and PD-L1/PD-1 axis have been emerged as one of the most relevant components of the GBM TME and one of the potential molecular pathways targetable with immunotherapy, respectively. It has been supposed that TAMs may acquire different phenotypes, switching from M1 to M2 phenotypes, with tumor-suppressive and tumor-stimulating role depending on the different surrounding conditions. PD-L1 is a type 1 transmembrane protein ligand expressed by T-cells, B-cells and antigen-presenting cells, with a main inhibitory checkpoint role on tumor immune regulation. While PD-L1 immunohistochemical expression has been extensively investigated in many cancers, its usefulness in the evaluation of GBM response rates to immunotherapy and its standardized evaluation by immunohistochemistry are still debated. The present review paper focuses on the current "state of the art" about the relationship between TME, PD-L1/PD-1 pathway and immunotherapy in GBM, also providing neuropathologists with an updated guide about the clinical trials conducted with PD-L1 and PD-1 inhibitors.
Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Neuropatologia , Imunoterapia , Microambiente TumoralRESUMO
Central nervous system (CNS) tumors represent a formidable clinical challenge due to their molecular complexity and varied prognostic outcomes. This review delves into the pivotal role of the epigenetic marker H3K27me3 in the development and treatment of CNS tumors. H3K27me3, specifically the trimethylation of lysine 27 on the histone H3 protein, plays a crucial role in regulating gene expression and maintaining chromatin architecture (e.g., in X-chromosome inactivation). Notably, a reduction in H3K27me3 levels, frequently tied to mutations in the H3 gene family such as H3F3A and HIST1H3B, is evident in diverse brain tumor variants, including the diffuse midline glioma characterized by the H3K27M mutation and certain pediatric high-grade gliomas. The loss of H3K27me3 has been linked to more aggressive behavior in meningiomas, with the trimethylation loss associated with significantly shorter recurrence-free survival (RFS) among grade 2 meningiomas, albeit not within grade 1 tumors. Pediatric posterior fossa ependymomas characterized by a lowered H3K27me3 and DNA hypomethylation exhibit poor prognosis, underscoring the prognostic significance of these epigenetic alterations in CNS tumors. Comprehending the role of H3K27me3 in CNS tumors is vital for advancing diagnostic tools and therapeutic interventions, with the goal of enhancing patient outcomes and quality of life. This review underscores the importance of ongoing investigations into H3K27me to refine and optimize management strategies for CNS tumors, paving the way for improved personalized medicine practices in oncology.
RESUMO
We focus on the new prognostic and predictive factors CD44, PDL1, and ATG7 in our study of surgical samples of patients with laryngeal squamous cell carcinoma (LSCC) using tissue microarray (TMA). Thirty-nine previously untreated patients affected by laryngeal carcinoma who then underwent surgical treatment were considered in this retrospective study. All surgical specimens were sampled, embedded in paraffin blocks, and stained with hematoxylin and eosin. A representative sample of the tumor was chosen and transferred into a new block of paraffin, the recipient block, to perform immunohistochemical analysis with the primary antibodies anti-CD44, PD-L1, and ATG7. At follow-up, 5-year disease-free survival (DFS) for negative and positive tumors was determined as 85.71% and 36% for CD44, 60% and 33.33% for PDL1, and 58.06% and 37.50% for ATG7, respectively. Multivariate analysis revealed that CD44 expression is an independent predictive factor of low-grade tumors (p = 0.008), lymph node metastasis at the time of diagnosis, and AGT7 negativity. Thus, CD44 expression is a potential marker for more aggressive forms of laryngeal cancer.
RESUMO
With the rise of novel immunotherapies able to stimulate the antitumor immune response, increasing literature concerning the immunogenicity of breast cancer has been published in recent years. Numerous clinical studies have been conducted in order to identify novel biomarkers that could reflect the immunogenicity of BC and predict response to immunotherapy. In this regard, TILs have emerged as an important immunological biomarker related to the antitumor immune response in BC. TILs are more frequently observed in triple-negative breast cancer and HER2+ subtypes, where increased TIL levels have been linked to a better response to neoadjuvant chemotherapy and improved survival. PD-L1 is a type 1 transmembrane protein ligand expressed on T lymphocytes, B lymphocytes, and antigen-presenting cells and is considered a key inhibitory checkpoint involved in cancer immune regulation. PD-L1 immunohistochemical expression in breast cancer is observed in about 10-30% of cases and is extremely variable based on tumor stage and molecular subtypes. Briefly, TNBC shows the highest percentage of PD-L1 positivity, followed by HER2+ tumors. On the other hand, PD-L1 is rarely expressed (0-10% of cases) in hormone-receptor-positive BC. The prognostic role of PD-L1 expression in BC is still controversial since different immunohistochemistry (IHC) clones, cut-off points, and scoring systems have been utilized across published studies. In the present paper, an extensive review of the current knowledge of the immune landscape of BC is provided. TILS and PD-L1 expression across different BC subtypes are discussed, providing a guide for their pathological assessment and reporting.