Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 4905, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318382

RESUMO

Neflamapimod, a selective inhibitor of p38 mitogen activated protein kinase alpha (MAPKα), is under clinical investigation for its efficacy in Alzheimer's disease (AD) and dementia with Lewy Bodies (DLB). Here, we investigated if neflamapimod-mediated acute inhibition of p38 MAPKα could induce vasodilation in resistance-size rat mesenteric arteries. Our pressure myography data demonstrated that neflamapimod produced a dose-dependent vasodilation in mesenteric arteries. Our Western blotting data revealed that acute neflamapimod treatment significantly reduced the phosphorylation of p38 MAPKα and its downstream target heat-shock protein 27 (Hsp27) involved in cytoskeletal reorganization and smooth muscle contraction. Likewise, non-selective inhibition of p38 MAPK by SB203580 attenuated p38 MAPKα and Hsp27 phosphorylation, and induced vasodilation. Endothelium denudation or pharmacological inhibition of endothelium-derived vasodilators such as nitric oxide (NO) and prostacyclin (PGI2) had no effect on such vasodilation. Neflamapimod-evoked vasorelaxation remained unaltered by the inhibition of smooth muscle cell K+ channels. Altogether, our data for the first time demonstrates that in resistance mesenteric arteries, neflamapimod inhibits p38 MAPKα and phosphorylation of its downstream actin-associated protein Hsp27, leading to vasodilation. This novel finding may be clinically significant and is likely to improve systemic blood pressure and cognitive deficits in AD and DLB patients for which neflamapimod is being investigated.


Assuntos
Doença de Alzheimer , Proteína Quinase 14 Ativada por Mitógeno , Doença de Alzheimer/tratamento farmacológico , Animais , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Artérias Mesentéricas , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ratos , Vasodilatação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA